The optimal method of fixation for primary total hip replacements (THR), particularly fixation with or without the use of cement is still controversial. In a systematic review and meta-analysis of all randomized controlled trials (RCT) comparing cemented versus uncemented THRS available in the published literature, we found that there is no significant difference between cemented and uncemented THRs in terms implant survival as measured by the revision rate. Better short-term clinical outcome, particularly an improved pain score can be obtained with cemented fixation. However, the results are unclear for the long-term clinical and functional outcome between the two groups. No difference was evident in the mortality and the post operative complication rate. On the other hand, the Radiographic findings were variable and do not seem to correlate with clinical findings as differences in the surgical technique and prosthesis design might be associated with the incidence of osteolysis. We concluded in our review that Cemented THR is similar if not superior to uncemented THR, and provides better short term clinical outcomes. Further research, improved methodology and longer follow up are necessary to better define specific subgroups of patients in whom the relative benefits of cemented and uncemented implant fixation can be clearly demonstrated.
It is recommended that the ankle be held in dorsiflexion at the time of placement of syndesmosis screw. We assessed the validity of this recommendation. A two-part roentgenographic and computerised analysis of distal tibiofibular syndesmosis. The first part involved recruitment of 30 healthy adult volunteers. The second part involved 15 ankle fractures with syndesmotic injury requiring syndesmosis screw placement. In the first part individuals maximally dorsiflexed and plantarflexed their ankles in a specialised jig for standardisation. Mortice views were taken and intermalleolar distance measured. In the second part mortice views were taken in plantarflexion and dorsiflexion before and after the placement of syndesmosis screw in theatre. The intermalleolar distance was then measured.Introduction
Materials and methods
Manoli and Schaeffer in 1987, showed that fixation by antiglide plate demonstrated superior static biomechanical properties compared to lateral plating. However there are some shortcomings in their study and hence we decided to perform our biomechanical study. The shortcomings of the Manoli study are. They did not use an interfragmentary lag screw for lateral plate fixation. It was a cadaveric study where the bone does not accurately represent the live bone. The quality of the bone ranging from normal to osteoporotic bone varies from cadaver to cadaver and hence there is no uniformity between the samples.
These bones were custom made for the experiment. We used two sets of bones, one representative of normal bone (Set A n=10) and the other of osteoporotic bone quality (Set B n=10). Each of the sets A &
B will have two types of fixations for artificially created Weber B Fractures.
Lateral plate with interfragmentary lag screw. Antiglide plate with interfragmentary lag screw. The strength of the fixation was measured by restressing the bone until the fixation failed using an Instron machine which simultaneously applied torque and compressive forces to the fibular construct. The resulting data was analysed on a computer and statistical analysis was performed.
The concept of tension band wiring is based on the fact that the distractive force applied to one surface of the bone will result in compression on the opposite articular surface. Clinical outcomes of TBW are not equivocal. It is associated with significant morbidity such as non union, failure of fixation, especially in osteoporotic bone and infection which sometimes leads to amputation. Often a second procedure for removal of prominent metal work is required. In our biomechanical study we investigated this concept as we believe that the forces generated by TBW construct do not generate significant compressive forces required for healing of fracture.
The advantage of using 4th generation composite bone model is that it provides uniformity which is not achievable in cadaveric studies. Two different bone models representative of Olecranon and patella were used. Transverse fractures were created in the bones and fixed with TBW technique as described in A.O. manual. Two 0.062-inch Kirschner wires and figure of eight configuration of 18G Stainless steel wire with single knot technique was used. Micro motion transducers (DVRT: MicroStrain, Williston, Vermont) with an accuracy of ± 1μm were placed across the fracture site both anteriorly and posteriorly. Continuous information regarding fracture distraction and compression, as determined by the transducers was recorded from both sites simultaneously during the experiment. The tension band wire construct was loaded up to a maximum force of 4000 Newtons for patella and 500 for the olecranon. The fractures were subjected to cyclic loading at 1Hz using a servo hydraulic materials-testing system (model 8500; Instron, Canton, Massachusetts). The results were analysed on a computer and statistical analysis performed.