Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 25 - 25
1 Feb 2016
Rasquinha BJ Dickinson AWL Ellis RE
Full Access

Surgical navigation requires an accurate, stable transformation between the tracking system and reference images. This study was the design and evaluation of an additively manufactured calibrator with an integrated verification tool, used to register cone-beam computed tomography (CBCT) image volume to electromagnetic (EM) tracking.

An Aurora EM system was used to track both the calibrator and a surgical probe. Intraoperative CBCT images were acquired with a GE Innova 4100 scanner. The calibrator incorporated 7 tantalum beads, a 6DOF EM sensor, and 7 through-holes for calibrator verification. The calibrator was characterised using the beads and averaged EM reading in 10 poses.

Target Registration Error (TRE) estimation used a device with 14 beads and 18 through-holes. For verification, the probe was placed in each path and the axis and tip location measured relative to the calibrator. This verification task took about 45s. Axial error was the angle between the probed paths and designed axes; translation error was the shortest distance between these lines.

The translation TRE was 3.14±0.96 mm and the angular TRE was 1.7±0.7 degrees, which is consistent with published EM evaluations. The validation axes had an inter-line distance of 0.9±0.78 mm and an axial difference of 1.1±0.7 degrees. The verification errors were smaller than TRE because of the different mathematical formulation. Although the verification calculation was not exactly a tracking error, it provided an alternative quantitative assessment of registration accuracy. This integrated intra-operative registration verification minimises modifications to the surgical workflow and these results demonstrated highly accurate orientation tracking in a surgical environment.