Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 132 - 132
2 Jan 2024
Dias D Fritsche-Guenther R Chan W Ellinghaus A Duda G Kirwan J Poh P
Full Access

The ability of the body to constantly maintain metabolism homeostasis while fulling the heightened energy and macromolecule demand is crucial to ensure successful tissue healing outcomes. Studies investigating the local metabolic environment during healing are scarce to date. Here, using Type 2 Diabetes (T2D) as a study model, we investigate the impact of metabolism dysregulation on scaffold-guided large-volume bone regeneration. Our study treated wild-type or T2D rats with 5 mm critical-sized femoral defects with 3D-printed polycaprolactone (PCL) scaffolds with 70% porosity. Metabolomics was leveraged for a holistic view of metabolism alteration as healing progress and correlated to regenerated bone tissue volume and quality assessed using micro-computed tomography (µ-CT), histology, and immunohistology. Semi-targeted metabolomics analysis indicated dysregulation in the glycolysis and TCA cycle – the main energy production pathways, in T2D compared to healthy animals. The abundance of metabolites substrates, i.e., amino acids – for protein/ extracellular matrix synthesis was also affected in T2D. Tissue-level metabolites observations aligned with morphological observation with less newly formed bone observed in T2D than wild-type rats. This study enlightens the metabolism landscape during scaffold-guided large-volume bone regeneration in wild-type vs. T2D to further guide the personalization of the scaffold to drive successful regeneration.