header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 15 - 15
1 Dec 2022
Graziani G Ghezzi D Sartori M Fini M Perut F Montesissa M Boi M Cappelletti M Sassoni E Di Pompo G Giusto E Avnet S Monopoli D Baldini N
Full Access

Infection in orthopedics is a challenge, since it has high incidence (rates can be up to 15-20%, also depending on the surgical procedure and on comorbidities), interferes with osseointegration and brings severe complications to the patients and high societal burden. In particular, infection rates are high in oncologic surgery, when biomedical devices are used to fill bone gaps created to remove tumors. To increase osseointegration, calcium phosphates coatings are used. To prevent infection, metal- and mainly silver-based coatings are the most diffused option. However, traditional techniques present some drawbacks, including scarce adhesion to the substrate, detachments, and/or poor control over metal ions release, all leading to cytotoxicity and/or interfering with osteointegration. Since important cross-relations exist among infection, osseointegration and tumors, solutions capable of addressing all would be a breakthrough innovation in the field and could improve clinical practice.

Here, for the first time, we propose the use antimicrobial silver-based nanostructured thin films to simultaneously discourage infection and bone metastases. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture. These characteristics, in turn, allow tuning silver release and avoid delamination, thus preventing toxicity. In addition, to mitigate interference with osseointegration, here silver composites with bone apatite are explored. Indeed, capability of bone apatite coatings to promote osseointegration had been previously demonstrated in vitro and in vivo. Here, antibacterial efficacy and biocompatibility of silver-based films are tested in vitro and in vivo. Finally, for the first time, a proof-of-concept of antitumor efficacy of the silver-based films is shown in vitro.

Coatings are obtained by silver and silver-bone apatite composite targets. Both standard and custom-made (porous) vertebral titanium alloy prostheses are used as substrates.

Films composition and morphology depending on the deposition parameters are investigated and optimized. Antibacterial efficacy of silver films is tested in vitro against gram+ and gram- species (E. coli, P. aeruginosa, S. aureus, E. faecalis), to determine the optimal coatings characteristics, by assessing reduction of bacterial viability, adhesion to substrate and biofilm formation. Biocompatibility is tested in vitro on fibroblasts and MSCs and, in vivo on rat models. Efficacy is also tested in an in vivo rabbit model, using a multidrug resistant strain of S. aureus (MRSA, S. aureus USA 300). Absence of nanotoxicity is assessed in vivo by measuring possible presence of Ag in the blood or in target organs (ICP-MS). Then, possible antitumor effect of the films is preliminary assessed in vitro using MDA-MB-231 cells, live/dead assay and scanning electron microscopy (FEG-SEM). Statistical analysis is performed and data are reported as Mean ± standard Deviation at a significance level of p <0.05. Silver and silver-bone apatite films show high efficacy in vitro against all the tested strains (complete inhibition of planktonic growth, reduction of biofilm formation > 50%), without causing cytotoxicity. Biocompatibility is also confirmed in vivo.

In vivo, Ag and Ag-bone apatite films can inhibit the MRSA strain (>99% and >86% reduction against ctr, respectively). Residual antibacterial activity is retained after explant (at 1 month). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 112 - 112
1 Jan 2017
Avnet S Di Pompo G Lemma S Ponzetti M Rucci N Gillies R Chano T Baldini N
Full Access

Cancer associated bone pain (CIBP) is a common event in patients with advanced disease with bone metastases (BM), significantly impairing their quality of life. Treatment options are limited and mainly based on the use of opioids with unacceptable side effects. Local acidosis is a well-known cause of pain since it directly stimulates nociceptors that express acid-sensing ion channels and densely innervate bone. In BM, local acidosis derives from osteoclast bone resorption activity and from the acidification by glycolytic tumor cells. Here we speculated that the pH lowering of intratumoral interstitial fluid also promotes nociceptors sensitization and hyperalgesia through the activation of cells of mesenchymal origin in BM microenvironment that might release inflammatory and nociceptive mediators.

As a model of breast cancer that can metastatise to the bone we used MDA-MB-231 (MDA), and a subclone with a higher tendency to form osteolytic BM (bmMDA). We evaluated the basal expression of proton pumps/ion transporters by Real-Time PCR (Q-RT-PCR). To evaluate the effect of extracellular acidosis on mesenchymal tumor-associated stroma, we used human osteoblast primary cultures from healthy donors and cancer-associated fibroblasts isolated with specific immunobeads from the tumor biopsies of patient with BM. We exposed the cells to pH 6.8 medium at different time points (between 3 to 24 hours). After the short-term incubation with acidosis, for the expression of and acid-sensing ion channels, inflammatory cytokines and nociceptive mediators that can produce hyperalgesia, we used both a wide screening through a deep-sequencing approach and Q-RT-PCR, and ELISA. Xenograft for osteolytic BM induced by intratibial injection of bmMDA were treated with Omeprazole and monitored for CIBP through several cognitive tests.

We found a significantly higher extracellular proton efflux and expression of proton pumps/ion transporters associated with the acid-base balance, the monocarboxylate transporter 4 (MCT4), the carbonic anhydrase (CA9), and the vacuolar ATPase (V-ATPase) V1G1 subunit, and V0c subunitin bmMDA, a subclone that is prone to form BM in respect to the parental cell line MDA-MB-231. In mesenchymal stromal cells, osteoblasts and cancer-associated fibroblasts, the incubation with pH 6.8 induced the expression of the achid-sensing ion channels AISC3/ACCN3 and AICS4/ACCN4, as well as of the nociceptive modulators nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), and of the inflammatory cytokines interleukin 6 (IL6) and 8 (IL8), and Chemokine (C-C motif) ligand 5 (CCL5). Furthermore, the targeting of V0c subunit to inhibit intratumoral acidification significantly reduced CIBP in mice model of BM.

In this study we demonstrated for the first time that, in addition to the direct acid-sensing neuronal stimulation, the acidic microenvironment of BM causes hyperalgesia through the activation of an inflammatory reaction in the tumor-associated mesenchymal stroma at the tumor site, thereby offering as a new target for palliative treatment in advanced cancer.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 103 - 103
1 Jan 2017
Di Pompo G Diez-Escudero A Benjamin Montufar E Espanol M Ciapetti G Baldini N Ginebra M
Full Access

The success of biomaterials lies in the direct interaction with the host tissue. Calcium phosphates (CaP) stand as an alternative graft material for bone regeneration due to their similar composition to natural bone. Few studies have focused on the early stages of bone-like material remodeling by osteoclasts (OC), though the CaP fate is to be resorbed and then replaced by new bone. Instead, to understand how osteoclasts modify the CaP surface and initiate resorption, so as to influence subsequent osteoblast activities and bone formation, is mandatory.

Sintered hydroxyapatite (s-HA) and biomimetic hydroxyapatite with two different microstructures (b-HA-C, coarse and b-HA-F, fine) discs (1500×250 µm2) were produced from the same reagents [1]. Tissue culture polystyrene (TCPS) was used as control. Precursor human OC from buffy coats were seeded on ceramic substrates [6·106cells/cm2] and supplemented with RANKL-containing osteoblast supernatant as differentiation medium over 21 days. Cell interaction with the biomaterials was investigated in terms of OC adhesion and differentiation, with gene expression, tartrate-resistant acid phosphatase (TRAP) and Hoechst staining for OC maturation. Cell culture supernatants were analyzed for ionic exchange, namely Ca and P, due to biomaterials or cells. Osteoclasts morphology was evaluated using SEM at 21 days. Innovatively, focused ion beam (FIB) was used to evaluate biomaterial structure beneath the OC to further investigate the resorption effects. To this aim, selected OC were cut cross-sectioned using a Gallium ion beam at an acceleration of 30KV, followed by a coarse milling at 10nA and a deposition of platinum to achieve a fine milling at 500pA.

Clear differences in cellular behavior were noted relative to the different substrate microstructures. Control TCPS and s-HA showed similar TRAP-positive staining and gene expression for mature OC. Several resorption pits with partial dissolution of the equiaxial grains of s-HA were noticed. b-HA substrates also showed attached and differentiated TRAP-positive OC, but gene expression resulted lower than control and s-HA. However, morphological evaluation with SEM-FIB interestingly showed early stages of osteoclast-mediated degradation on b-HA-F, i.e.an increased surface roughness in the substrate underlying cells. B-HA-C also showed attached and mature OC with a scarce degradation activity

FIB technique has been applied to cell-seeded CaP and shown as a viable method to investigate OC morphology and resorption. Though gene expression showed similarities for both biomimetic substrates, substrate morphology observed underneath OC was significantly different. b-HA-F showed early stages of OC mediated degradation underneath well spread cells similar to those seen on s-HA. No resorptive activity was found on b-HA-C even though gene expression values were similar to b-HA-F: both the acute ion exchange and the surface tortuosity on b-HA-C could explain the difficulty with the resorptive process by OC. In conclusion focused ion beam technique complements SEM imaging and may disclose changes in the inner structure of materials due to cell/material interactions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 101 - 101
1 Jan 2017
Diez-Escudero A Espanol M Di Pompo G Torreggiani E Ciapetti G Baldini N Ginebra M
Full Access

The regenerative potential of bone grafts is tightly linked to the interaction of the biomaterial with the host tissue environment. Hence, strategies to confer artificial extracellular matrix (aECM) cues on the material surface are becoming a powerful tool to trigger the healing cascade and to stimulate bone regeneration. The use of glycosaminoglycans (GAGs), such as heparin, as aECM components has gained interest in the last years as a strategy to improve biological response. Calcium phosphates (CaP) are extensively used as bone grafts, however no studies have investigated the effect of GAG functionalisation on their surface. Some authors have focused on the effects of GAGs on osteoblastic cells, however, little work has been performed on the interaction with osteoclasts (OC), and still the reported effects are controversial [1]. The aim of this study was to investigate the effect of heparin on osteoclastic fate in terms of adhesion and differentiation.

Sintered CaP (β-TCP) and biomimetic CaP (calcium-deficient hydroxyapatite, CDHA) discs were synthesized at 1100 ºC and at 37ºC, respectively. Heparinisation was achieved though silane coupling (APTES) followed by amidation in the presence of EDC/NHS to covalently link heparin. The osteoclast response of heparinised (H) vsnon-heparinised substrates was studied using human monocytes as OC precursors. Tissue culture plastic (TCPS) was used as a control sample. Cell densities were 6·106and 3·106cells/cm2for biomaterials and TCPS, respectively. Cell cultures were supplemented every 3 days with 25% supernatant of osteoblast-like cell line as a source of RANKL, as well as other stimulating factors [2]. Tartrate-resistant acid phosphatase and Hoechst staining were used to evaluate OC adhesion, differentiation and morphology at different time points from seeding on the surfaces (14–21–28 days).

OC precursors showed adhesion on all substrates. β-TCP and β-TCP-H hosted higher number of OC precursors which might be related to the smoother sintered surface of the materials. Oppositely, the high roughness of CDHA and CDHA-H hamper the adhesion of OC, hence a lower number of cells was observed on heparin-coated and uncoated biomimetic apatites. However, the maturation of OC precursors was found to take place at earlier times (14days) on biomimetic substrates compared to sintered ones. TCPS, CDHA, CDHA-H and β-TCP-H showed clearly differentiated OC at 14 days, as revealed by TRAP positivity and multinuclearity. Interestingly, CDHA-H and β-TCP-H induced the highest multinuclearity among all differentiated OC. Both heparinised substrates point at an enhancing effect of heparin on OC maturation.

OC precursors are able to differentiate on β-TCP and CDHA substrates, a process enhanced when heparin functionalisation is performed on the materials surface. In our hands heparinisation is promoting OC differentiation at early time points, similarly to TCPS control. Interestingly, heparin substrates induced larger TRAP positive-OC and higher multinuclearity in the mature OC than TCPS control. As pointed out by Irie et al., heparin might interact through the RANKL/OPG ratio [3], thus inhibiting OPG activity and enhancing RANKL which triggers OC maturation.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 9 - 9
1 Jul 2014
Di Pompo G Granchi D Poli F Lorenzi B Mandrone M Baldini N
Full Access

Summary Statement

In this study it has been considered an alternative therapeutic approach to bone resorption diseases by using plant decoctions to improve adherence from patients to the treatment. In this context, Hemidesmus indicus represents a possible therapeutic or adjuvant natural compound.

Introduction

The acceleration of bone remodelling, with an excessive osteoclastogenesis or activation of mature osteoclasts, causes the loss of bone mass which is implicated in bone resorption diseases. Conventional therapies are expensive and limited by systemic toxicity and low drug bioavailability. Alternative treatments that are not only effective but also administered employing formulations and dosages different from conventional ones, may improve adherence to therapy, having a positive influence on clinical outcomes. Experimental evidence have attributed antiproliferative and apoptosis inducing activity on different cell lines (including osteoclast precursors or mature osteoclasts) to four plants used in Ayurvedic medicine: Asparagus racemosus (AR), Emblica officinalis (EO), Hemidesmus indicus (HI) and Rubia cordifolia (RC) These properties could be helpful in the treatment of some bone resorption diseases. In order to clarify the possible therapeutic effects of these compounds, the anti-osteoclast activity of their decoctions were evaluated.