Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 41 - 41
1 Sep 2012
De Haan R Scheerlinck T
Full Access

INTRODUCTION

Thermal necrosis of the femoral head, due to heat generation during cement polymerization, is a concern in hip resurfacing. Bone necrosis could cause fractures and/or implant loosening. Some authors1 found an inverse relationship between the size of the femoral component and the risk of revision after hip resurfacing. We postulate that smaller implants contain proportionally more cement than larger ones and that this could explain the effect of implant size on revision rate. As such, we investigated the relation between implant size and both, the average cement mantle thickness and the cement-filling index (fraction of cement volume and total volume within the implant).

MATERIALS AND METHODS

Nineteen human femoral heads, collected during total hip arthroplasty, were machined for hip resurfacing with original ReCap (Biomet) instruments. The head sizes were chosen so we could implant two resurfacing heads for each even size between 40 and 56 mm, and one for size 58 mm. Each reamed head was provided with a number of anchoring holes proportional to the head size and was kept at 37°C. After pressure-lavage with water at 20°C, polymeric replicas of the original Recap implants were cemented according to a strict protocol. The exact amount of Refobacin Bone Cement LV (Biomet) needed to fill half the volume of the implant was pored into the resurfacing head and 2.5 minutes after starting cement mixing, the implant was manually impacted on the reamed femoral head.

Specimens were scanned with computer tomography from the distal border of the resurfacing head to the top of the dome and CT-images were analyzed with an adapted version of validated segmentation software2. Based on gray values we identified four different elements: the polymeric stem and the outer shell of the implant, the cement-free cancellous bone and the cement mantle. Both, the average cement mantle thickness and the cement-filling index were calculated as described previously3.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1291 - 1297
1 Oct 2008
De Haan R Pattyn C Gill HS Murray DW Campbell PA De Smet K

We examined the relationships between the serum levels of chromium and cobalt ions and the inclination angle of the acetabular component and the level of activity in 214 patients implanted with a metal-on-metal resurfacing hip replacement. Each patient had a single resurfacing and no other metal in their body. All serum measurements were performed at a minimum of one year after operation. The inclination of the acetabular component was considered to be steep if the abduction angle was greater than 55°.

There were significantly higher levels of metal ions in patients with steeply-inclined components (p = 0.002 for chromium, p = 0.003 for cobalt), but no correlation was found between the level of activity and the concentration of metal ions. A highly significant (p < 0.001) correlation with the arc of cover was found. Arcs of cover of less than 10 mm were correlated with a greater risk of high concentrations of serum metal ions. The arc of coverage was also related to the design of the component and to size as well as to the abduction angle of the acetabular component. Steeply-inclined acetabular components, with abduction angles greater than 55°, combined with a small size of component are likely to give rise to higher serum levels of cobalt and chromium ions. This is probably due to a greater risk of edge-loading.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1158 - 1163
1 Sep 2008
De Haan R Campbell PA Su EP De Smet KA

We have reviewed 42 patients who had revision of metal-on-metal resurfacing procedures, mostly because of problems with the acetabular component. The revisions were carried out a mean of 26.2 months (1 to 76) after the initial operation and most of the patients (30) were female.

Malpositioning of the acetabular component resulted in 27 revisions, mostly because of excessive abduction (mean 69.9°; 56° to 98°) or insufficient or excessive anteversion. Seven patients had more than one reason for revision. The mean increase in the diameter of the component was 1.8 mm (0 to 4) when exchange was needed.

Malpositioning of the components was associated with metallosis and a high level of serum ions. The results of revision of the femoral component to a component with a modular head were excellent, but four patients had dislocation after revision and four required a further revision.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 538 - 541
1 Apr 2007
De Haan R Campbell P Reid S Skipor AK De Smet K

A prospective study of serum and urinary ion levels was undertaken in a triathlete who had undergone a metal-on-metal resurfacing arthroplasty of the hip four years previously. The one month study period included the final two weeks of training, the day of the triathlon, and the two weeks immediately post-race. Serum cobalt and chromium levels did not vary significantly throughout this period, including levels recorded on the day after the 11-hour triathlon. Urinary excretion of chromium increased immediately after the race and had returned to pre-race levels six days later. The clinical implications are discussed.