We performed a retrospective cohort study in 4 hospitals and included patients with staphylococcal acute post-operative (< 1 month) PJI treated with DAIR in 2011–2016 period. Univariate and multivariate Cox analysis and Kaplan Meier curves were used to determine the risk factors for treatment failure (persistence of clinical signs, new surgery w/o persistence or superinfection, infection-related death).Aim
Method
Biphasic calcium phosphates (BCP) are the most frequently used materials because of their mineral analogy with bio-mineral part of bones. Their chemical synthesis can be modulated by doping, in order to respond to the biological needs. We present here the biological responses induced by copper ions in solution, to characterize its cytotoxicity and antibacterial activity. We also investigate the antibacterial property of Cu-doped BCP (Ca10 Cu0.1 (PO4)6 (OH)1.8 O0.2) on a strain of clinical interest: S. aureus, compared to undoped BCP. The sol-gel route has been used to prepare the BCP ceramics. Human BMC (Bone Marrow Cells) were obtained from metaphysal cancellous bone collected during hip arthroplasty and used for cytotoxicity evaluations. A strain of Staphylococcus aureus isolated from an osteoarticular infection after total knee arthroplasty was used to evaluate antibacterial activities. Results indicate that 3 ppm of copper ions leads to the death of all cultured bacteria in 24 hours and 25 ppm caused the death of all cells in 15 days. Regarding BCP, the undoped bioceramics increased the bacterial growth compared to a control without bioceramic. After 16 hours of contact, the copper ions released by the Cu-doped BCP induced a significant decrease of the bacterial concentration, indeed no viable bacteria were found. These materials seem to be a promising alternative for the preparation of multifunctional bone substitutes.
Medical applications of nanotechnology are promising because it allows the surface of biomaterial to be tailored to optimise the interfacial interaction between the biomaterial and its biological environment. Such interfaces are of interest in the domain of orthopaedic surgery as they could have anti-bacterial functions or could be used as drug delivery systems. The development of orthopaedics is moving towards better integration of biology in implants and surgical techniques, but the mechanical properties of implanted materials are still important for orthopaedic applications. During clinical implantation, implants are subjected to large mechanical stresses. In order to obtain the best performance during clinical use, mechanical properties of implants need to be investigated and understood. We modified the topography of commercial titanium orthopaedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterised using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and 80 cN·m. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter.Background
Method
External fixation is a method of osteosynthesis currently required in traumatology and orthopaedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after a bacterial colonisation of the pin due to its contact with skin and local environment. To prevent such local contamination, one way to handle this issue is to create a specific coating using method which could be applied in the medical field. In this work we develop a surface coating for external fixator pins based on photocatalytic TiOα properties, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. The morphology and structure of the sol-gel coating layers were characterised using, respectively, scanning electron microscopy and X-ray diffraction. Resistance properties of the coating were investigated by mechanical testing. Photo-degradation of acid orange 7 in aqueous solution was used as a probe, to assess the photo-catalytic activity of titanium dioxide layers under UV irradiation. The bactericidal effect induced by the process was evaluated against 2 strains: a Staphylococcus aureus and a multiresistant Staphylococcus epidermidis.Background
Method
In this study we randomised 140 patients who
were due to undergo primary total knee arthroplasty (TKA) to have the
procedure performed using either patient-specific cutting guides
(PSCG) or conventional instrumentation (CI). The primary outcome measure was the mechanical axis, as measured
at three months on a standing long-leg radiograph by the hip–knee–ankle
(HKA) angle. This was undertaken by an independent observer who
was blinded to the instrumentation. Secondary outcome measures were
component positioning, operating time, Knee Society and Oxford knee
scores, blood loss and length of hospital stay. A total of 126 patients (67 in the CI group and 59 in the PSCG
group) had complete clinical and radiological data. There were 88
females and 52 males with a mean age of 69.3 years (47 to 84) and
a mean BMI of 28.6 kg/m2 (20.2 to 40.8). The mean HKA
angle was 178.9° (172.5 to 183.4) in the CI group and 178.2° (172.4
to 183.4) in the PSCG group (p = 0.34). Outliers were identified
in 22 of 67 knees (32.8%) in the CI group and 19 of 59 knees (32.2%)
in the PSCG group (p = 0.99). There was no significant difference
in the clinical results (p = 0.95 and 0.59, respectively). Operating time,
blood loss and length of hospital stay were not significantly reduced
(p = 0.09, 0.58 and 0.50, respectively) when using PSCG. The use of PSCG in primary TKA did not reduce the proportion
of outliers as measured by post-operative coronal alignment. Cite this article:
We undertook a randomised controlled trial to compare the outcomes of skin adhesive and staples for skin closure in total hip replacement. The primary outcome was the cosmetic appearance of the scar at three months using a surgeon-rated visual analogue scale. In all, 90 patients were randomised to skin closure using either skin adhesive (n = 45) or staples (n = 45). Data on demographics, surgical details, infection and oozing were collected during the in-patient stay. Further data on complications, patient satisfaction and evaluation of cosmesis were collected at three-month follow-up, and a photograph of the scar was taken. An orthopaedic and a plastic surgeon independently evaluated the cosmetic appearance of the scars from the photographs. No significant difference was found between groups in the cosmetic appearance of scars at three months (p = 0.172), the occurrence of complications (p = 0.3), or patient satisfaction (p = 0.42). Staples were quicker and easier to use than skin adhesive and also less expensive. Skin adhesive and surgical staples are both effective skin closure methods in total hip replacement.