header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 45 - 45
1 Mar 2021
Czerbak K Gheduzzi S Clift S
Full Access

Abstract

Objectives

A fibril reinforced multiphasic cartilage model was developed to improve the understanding of the depth-dependent cartilage internal structure and its through thickness biomechanical response. The heterogeneous model of cartilage was validated against full-field strain measurement obtained via Digital Image Correlation (DIC) during free swelling experiments.

Methods

Hemi-cylindrical cartilage cores of 5mm diameter were obtained from porcine femoral condyles and humeral heads. The full field behaviour of these samples was monitored using DIC during an osmotic free swelling experiment performed following a standardised protocol [1]. Computational models were created in FEBio (version 2.8, febio.org). The cartilage, submerged in saline solution was represented by a 1×1mm cube [2] with geometry and constrains set up to mimic the experimental conditions. Cartilage was modelled as a multiphasic material represented by one inhomogeneous layer with depth-dependent Young's modulus [3], zonally varied water content and zonally oriented collagen fibrils [4]. Experimental and predicted strain maps were compared to each other both qualitatively and quantitatively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 26 - 26
1 Oct 2016
Czerbak K Clift S Gheduzzi S
Full Access

Osteoarthritis is one of the most common musculoskeletal diseases. It involves degeneration and loss of articular cartilage, leading to a painful bone on bone articulation during movement. Numerical FEA models exist to predict the mechanical behaviour of degenerated cartilage. One of the limitations of these models arises from the poor validation that can be attained with traditional experimental data. This typically relies on comparison with global mechanical quantities such as total tissue strain, which mask the individual contributions originating from the different layers. In order to improve on this, an experimental method was developed to visualise the through-thickness behaviour of articular cartilage.

Four experiments were performed on hemi-cylindrical cartilage plugs, harvested from a porcine femoral head, and immersed in a fluid solution. An Indian ink speckle pattern was applied to the flat surface of each hemi-cylinder. The specimens were equilibrated in 2.5M NaCl solution, transferred to a custom designed testing rig, and a reference image of the tissue cross-section was taken.

The solution concentration was then decreased to 0.15M and, predictably, the tissue thickness changed. Images of the tissue cross section were taken every 60s for the duration of the experiment (3600s). All images were analysed using a DIC algorithm (Ncorr open-source 2D digital image correlation matlab program), and documented the strain changes through the tissue thickness as a function of time. The measured total strain in the tissue was consistent with that reported by Lai et al. (1991). However the present technique allows to quantify the strain contribution from any of the tissue layers or sublayer. This poses a significant advantage over traditional methods as resulting information can further the understanding of the factors contributing to the mechanical behaviour of the tissue and provides an ideal platform for validating more and more refined models of tissue behaviour.