Osteochondral allograft (OCA) transplants have been used clinically for more than 40 years as a surgical option for joint restoration, particularly for young and active patients. While immediate graft rejection responses have not been documented, it is believed that the host's immunological responses may directly impact OCA viability, incorporation, integrity, and survival, and therefore, it is of the utmost importance to further optimize OCA transplantation outcomes. The influences of sub-rejection immune responses on OCA transplantation failures have not been fully elucidated therefore aimed to further characterize cellular features of OCA failures using immunohistochemistry (IHC) in our continued hopes for the successful optimization of this valuable surgical procedure. With IRB approval, osteochondral tissues that were resected from the knee, hip, and ankle of patients undergoing standard-of-care revision surgeries (N=23) to treat OCA failures and tissues from unused portions of OCAs (N=7) that would otherwise be discarded were recovered. Subjective histologic assessments were performed on hematoxylin and eosin-stained and toluidine blue-stained sections by a pathologist who was blinded to patient demographics, outcomes data, and tissue source. IHC for CD3, CD8, and CD20 were performed to further characterize the and allow for subjective assessment of relevant immune responses.Introduction and Objective
Materials and Methods
Anterior cruciate ligament reconstruction (ACLR) with tendon autografts is the “gold standard” technique for surgical treatment of ACL injuries. Common tendon graft choices include patellar tendon (PT), semitendinosus/gracilis “hamstring” tendon (HT), or quadriceps tendon (QT). Healing of the graft after ACLR may be affected by graft type since the tissue is subjected to mechanical stresses during post-operative rehabilitation that play important roles in graft integration, remodeling and maturation. Abnormal mechanical loading can result in high inflammatory and degradative processes and altered extracellular matrix (ECM) synthesis and remodeling, potentially modifying tissue structure, composition, and function. Because of the importance of load and ligamentization for tendon autografts, this study was designed to compare the differential inflammatory and degradative metabolic responses to loading by three tendon types commonly used for autograft ACL reconstruction. With IRB approval (IRB # 2009879) and informed patient consent, portions of 9 QT, 7 PT and 6 HT were recovered at the time of standard of care ACLR surgeries. Tissues were minced and digested in 0.2 mg/ml collagenase solution for two hours and were then cultured in 10% FBS at 5% CO2, 37°C, and 95% humidity. Once confluent, cells were plated in Collagen Type I-coated BioFlex® plates (1 × 105 cells/well) and cultured for 2 days prior to the application of strain. Then, media was changed to supplemented DMEM with 2% FBS for the application of strain. Fibroblasts were subjected to continuous mechanical stimulation (2-s strain and 10-s relaxation at a 0.5 Hz frequency) at three different elongation strains (mechanical stress deprivation-0%, physiologic strain-4%, and supraphysiological strain-10%)9 for 6 days using the Flexcell FX-4000T strain system. Media was tested for inflammatory biomarkers (PGE2, IL-8, Gro-α, and MCP-1) and degradation biomarkers (GAG content, MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2). Significant (p<0.05) difference between graft sources were assessed with Kruskal-Wallis test and post-hoc analysis. Results are reported as median± interquartile range (IQR).Introduction and Objective
Materials and Methods