Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 4 - 4
1 Jan 2016
MacDonald D Clarkin-Wright G Parvizi J Lee G Klein G Rimnac C Gilbert J Kurtz S
Full Access

Introduction

In THA, fretting corrosion at the head-stem taper junction has emerged as a clinical concern that may result in adverse local tissue reactions, even in patients with a metal-on-polyethylene bearing [1]. Taper junctions that employ a ceramic head have demonstrated reduced corrosion at the interface [2]. However, during revision surgery with a well-fixed stem, a titanium sleeve is used in conjunction with a ceramic head to ensure proper fit of the head onto the stem and better stress distribution. In vitro testing has suggested that corrosion is not a concern in sleeved ceramic heads [3]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads.

Materials and Methods

Between 2001 and 2014, 35 sleeved ceramic heads were collected during revision surgery as part of a multi-center retrieval program. The sleeves were all fabricated from titanium alloy and manufactured by 4 companies (CeramTec (n=14), Smith & Nephew (Richards, n=11), Stryker (n=5), and Zimmer (n=5)). The femoral heads were made from 3 ceramics (Alumina (n=7), Zirconia (n=11), and Zirconia-toughened Alumina (n=17)). Sleeve dimensions (length and thickness) were measured using calibrated calipers. Fretting corrosion of the sleeves and available associated stems was scored using a 4-point, semi-quantitative scoring system [4], with 1 being little-to-no damage, and 4 corresponded to severe fretting corrosion. Five sleeves could not be extracted; thus the external surface was not scored.