The employment of biophysical therapy to accelerate the healing of tissues is by now a well-established practice in many orthopaedic situations, indicated mainly for osteogenesis and chondrogenesis. Assessments of the effects of biophysical stimuli on joint cartilage (CRES, Cartilage Repair &
Elecromagnetic Stimulation) performed with pre-clinical studies and clinical studies (in operations to reconstruct LCA and microfractures) have shown how biophysical stimulation controls the microambience, and have suuplied the rationale for passing to an evaluation of the effects also in the case of joint replacement. We launched a randomized prospective clinical study of 30 patients aged between 60 and 85 years, afflicted with gonarthrosis and undergoing operation for prosthesis. The randomization involved subdividing them into two homogeneous groups: the first with biophysical treatment with I-ONE therapy (Igea-Clinical Biophysics) (experimental group); the second not undergoing the biophysical treatment (control group). In the experimenal group, the I-ONE therapy was commenced at 3–7 days from the operation, administered for 4 hours per day and maintained for 60 days consecutively. The clinical evaluations were performed by compiling functional reports (swelling of the knee, Knee Score, SF-36 and VAS) in the pre-operative period and postoperatively at 1, 2, 6 and 12 months. The data processing was subjected to statistical evaluation by an independent observer using Student’s two-tail t test and the Generalized Linear Mixed Effects Model. The preliminary results showed that at the baseline there are no differences between the groups either for the KNEE score, nor the VAS, or the SF-36. Already after 1 month the differences between the groups are statistically significant (p<
0.05 for KNEE score, p<
0.001 for swelling, p<
0.0001 for VAS and SF-36). At 2 months the differences between the groups are highly significant (p<
0.0001). The study entails a long-term evaluation with monitoring of the patients at one year from operation. The results of this study supply the basis for clinical employment of biophysical treatment with I-ONE immediately following joint surgery, enabling inflammation to be controlled and increasing anabolic activity and protecting its microambience.