Patients ≤ 55 years have a high primary TKA revision rate compared to patients >55 years. Guided motion knee devices are commonly used in younger patients yet outcomes remain unknown. In this sub-group analysis of a large multicenter study, 254 TKAs with a second-generation guided motion knee implant were performed between 2011–2017 in 202 patients ≤ 55 years at seven US and three European sites. Revision rates were compared with Australian Joint Registry (AOANJRR) 2017 data. Average age 49.7 (range 18–54); 56.4% females; average BMI 34 kg/m2; 67.1% obese; patellae resurfaced in 98.4%. Average follow-up 4.2 years; longest follow-up six years; 27.5% followed-up for ≥ five years. Of eight revisions: total revision (one), tibial plate replacements (three), tibial insert exchanges (four). One tibial plate revision re-revised to total revision. Revision indications were mechanical loosening (n=2), infection (n=3), peri-prosthetic fracture (n=1), and instability (n=2). The Kaplan-Meier revision estimate was 3.4% (95% C.I. 1.7% to 6.7%) at five years compared to AOANJRR rate of 6.9%. There was no differential risk by sex. The revision rate of the second-generation guided motion knee system is lower in younger patients compared to registry controls.
Outcomes for guided motion primary total knee arthroplasty (TKA) in obese patients are unknown. 1,684 consecutive patients underwent 2,059 primary TKAs with a second-generation guided motion implant between 2011–2017 at three European and seven US sites. Of 2,003 (97.3%) TKAs in 1,644 patients with BMI data: average age 64.5 years; 58.4% females; average BMI 32.5 kg/m2; 13.4% had BMI ≥ 40 kg/m2. Subjects with BMI ≥ 40 kg/m2 had longest length of hospital stay (LOS) at European sites; LOS similar at US sites. Subjects with BMI ≥ 40 kg/m2 (P=0.0349) had longest surgery duration. BMI ≥ 40 kg/m2 had more re-hospitalizations or post-TKA reoperations than BMI < 40 kg/m2 (12.7% and 9.2% at five-year post-TKA, P<0.0495). Surgery duration and long-term complication rates are higher in patients with BMI ≥ 40 kg/m2, but device revision risk is not elevated.
Patients ≤ 55 years have a high primary TKA revision rate compared to patients >55 years. Guided motion knee devices are commonly used in younger patients yet outcomes remain unknown. In this sub-group analysis of a large multicenter study, 254 TKAs with a second-generation guided motion knee implant (Journey II Bi-Cruciate Stabilized Knee System, Smith & Nephew, Inc., Memphis) were performed between 2011–2017 in 202 patients ≤ 55 years at seven US and three European sites. Revision rates were compared with Australian Joint Registry (AOANJRR) 2017 data.Introduction
Materials and Methods
Outcomes for guided motion primary total knee arthroplasty (TKA) in obese patients are unknown. 1,684 consecutive patients underwent 2,059 primary TKAs with a second-generation guided motion implant (Journey II Bi-Cruciate Stabilized Knee System, Smith & Nephew, Inc., Memphis) between 2011–2017 at three European and seven US sites.Introduction/Aim
Materials and Methods
Navigation in total hip arthroplasty (THA) has the goal to improve accuracy of cup orientation. Measurement of cup orientation on conventional pelvic radiographs is susceptible to error due to pelvic malpositioning during acquisition. A recently developed and validated software using a postoperative radiograph in combination with statistical shape modelling allows calculation of exact 3-dimensional cup orientation independent of pelvic malpositioning. We asked (1) what is the accuracy of computer-navigated cup orientation (inclination and anteversion) and (2) what is the percentage of outliers (>10° difference to aimed inclination and anteversion) using postoperative measurement of 3-dimensional cup orientation.Introduction
Objectives
We have examined the relationship between the size of the flexion gap and the anterior translation of the tibia in flexion during implantation of a posterior cruciate ligament (PCL)-retaining BalanSys total knee replacement (TKR). In 91 knees, the flexion gap and anterior tibial translation were measured intra-operatively using a custom-made, flexible tensor-spacer device. The results showed that for each increase of 1 mm in the flexion gap in the tensed knee a mean anterior tibial translation of 1.25 mm (SD 0.79, 95% confidence interval 1.13 to 1.37) was produced. When implanting a PCL-retaining TKR the surgeon should be aware that the tibiofemoral contact point is related to the choice of thickness of the polyethylene insert. An additional thickness of polyethylene insert of 2 mm results in an approximate increase in tibial anterior translation of 2.5 mm while the flexed knee is distracted with a force of between 100 N and 200 N.
We reviewed retrospectively 490 patellar ligament reconstructions for cruciate ligament injuries performed from 1980 to 1990. There were six cases of patellar splitting and three displaced patellar fractures in donor knees. The fissure fractures all occurred during the removal of the patellar bone block. The displaced fractures were sustained during early rehabilitation, and in two of the three patients, involved the normal contralateral knee. The major reasons for this complication were imprecise saw cuts, spreading osteotomies, and the use of a too large patellar bone block. When a trapezoidal bone block is used to self-lock in the femoral tunnel, this should preferably be taken from the tibia. Special care is needed in rehabilitation when the graft has been taken from the contralateral knee.