Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 67 - 67
1 Mar 2005
Cappella M Bevilacqua C Bencivenga R Chiurazzi E Piani M Gigante A
Full Access

Autogenous cancellous bone is the most effective material in stimulating osteogenic response and the standard graft augmentation for patients with nonunions or bone defects. However it may not be available in sufficient quantity and bone harvesting may give rise to morbidity. Allograft does not have the osteogenic potential of autogenous bone and may be complicated by immunological reaction and transmission of infections.

The search of bone substitutes has led to study several growth factors capable of inducing bone formation. Bone morphogenetic proteins (BMPs) have been shown to have a central role in endochondral and intramembranous bone formation and are thought to promote normal bone healing process. Recent studies demonstrated that platelet-rich plasma (PRP) provides several growth factors and stimulates osteogenesis.

The aim of the study was the evaluation of rhBMP-7 (rhOP-1) and PRP effects on the different cells detected at the site of nonunion, such as osteoblast-like cells, fibroblast-like cells and mesenchymal cells.

During the surgical treatment of seven nonunion cases, cancellous bone and nonunion tissue were harvested. Osteoblast-like cells and fibroblast-like cells were isolated and characterized. Mesenchymal cells were obtained from bone marrow samples of the same patients. Each cell type was incubated with rhBMP-7 and PRP at different concentrations. Proliferation rate and alkaline phosphatase (ALP) activity were assessed at 3, 7, 15, and 30 days. cytochemical and immunocytochemical analysis were performed at 15 and 30 days.

Proliferation rate was higher in osteoblast-like cells and mesenchymal cells than in fibroblast-like cells. Growth factors induced mesenchymal cells to express osteoblast phenotype markers.

The results show that fibroblast-like cells at the site of nonunion are responsive to growth factors stimulation, though their low osteoblastic differentiation rate, even at highest concentration of growth factors. These data suggest that the use of growth factors in nonunion treatment should be combined with autologous cancellous bone and/or bone marrow graft, sources of target cells, in order to enhance osteogenic response.