Glenoid failure remains the most common mode of total shoulder arthroplasty failures. Porous tantalum metal (Trabecular Metal™, Zimmer) have grown in popularity in hip and knee arthroplasty. First-generation porous tantalum metal-backed glenoid components demonstrated metal debris, resulted in failure, and were revised to second-generation glenoid implants. Evidence for second-generation porous tantalum metal implants in shoulder arthroplasty is sparse.1–4 The purpose of this study was to assess clinical and radiographic outcomes in a series of patients with second-generation porous tantalum glenoid components at a minimum two-years postoperative. We retrospectively reviewed the clinical and radiographic outcomes of patients who received a second-generation porous tantalum glenoid component anatomic shoulder arthroplasty between May 2009 and December 2017 with minimum 24 months follow-up. The shoulder arthroplasties were performed by one of two senior fellowship-trained surgeons. We collected postoperative clinical outcome indicators: EQ5D visual analog scale (VAS), Western Ontario Osteoarthritis of the Shoulder (WOOS) Index, American Shoulder and Elbow Surgeons (ASES) Score, and Constant Score (CS). Radiographic review was performed by an independent fellowship-trained surgeon. The Endrizzi metal debris grading system1 was utilized to grade metal debris. We computed descriptive statistics and compared outcome scores between groups via the non-parametric Wilcoxon rank-sum test, with group-wise comparisons defined by: metal debris and humeral head migration (secondary analyses). Thirty-five patients [23 male (65.7%) and 12 female (34.3%)] with 40 shoulder replacements participated in the study. Forty of 61 shoulders (65.6%) had an average of 64 ± 20.3 months follow-up (range 31 to 95). Average BMI was 27.5 ± 4.4 kg/m2 (range 19.5 to 39.1). The average postoperative EQ5D VAS at final follow-up was 74.6 ± 22.5, WOOS Index 87.9 ± 16.6, ASES Score 88.3 ± 10.9, and CS 80.4 ± 13. At final follow-up, 18 of 40 shoulders (45%) had metal debris [15 of 40 (37.5%) Endrizzi grade 1 and three of 40 (7.5%) Endrizzi grade 2], and 22 of 40 shoulders (55%) did not show evidence of metal debris. There was one non-revision reoperation (open subscapularis exploration), one shoulder with anterosuperior escape, three shoulders with glenoid radiolucencies indicative of possible glenoid loosening, and nine shoulders with superior migration of the humeral head (>2mm migration at final follow-up compared to immediate postoperative). When comparing postoperative scores between patients with vs without metal debris, we found no statistically significant difference in the EQ5D VAS, WOOS Index, ASES Score and CS. On further analyses, when comparing superior migration of the humeral head and postoperative outcomes scores, we found no statistically significant difference. We report the longest published follow-up with clinical and radiographic outcomes of second-generation porous tantalum glenoid anatomic shoulder arthroplasties. In this series of patients, 45% of total shoulder arthroplasties with a second-generation porous tantalum glenoid implant had radiographic evidence of metal debris. This metal debris was not statistically associated with poorer postoperative outcomes. Further investigation and ongoing follow-up are warranted.
We evaluated clinical and radiographic outcomes of total shoulder
arthroplasty (TSA) using the second-generation Trabecular Metal
(TM) Glenoid component. The first generation component was withdrawn
in 2005 after a series of failures were reported. Between 2009 and
2012, 40 consecutive patients with unilateral TSA using the second-generation
component were enrolled in this clinical study. The mean age of
the patients was 63.8 years (40 to 75) and the mean follow-up was
38 months (24 to 42). Patients were evaluated using the Constant score (CS), the American
Shoulder and Elbow Surgeons (ASES) score and routine radiographs.Aims
Methods
Restoration of the native joint line in total knee arthroplasty is important in restoring ligamentous balance and normal knee kinematics. Failure to achieve this could lead to reduced range of motion, patellofemoral maltracking and suboptimal outcomes. The purpose of this study was to analyse the clinical and functional outcome of patients who demonstrated joint line changes after computer-assisted (CAS) total knee arthroplasty (TKA). A prospective study was conducted for 168 patients (168 knees) who underwent CAS TKA by two surgeons at a single institution with an average follow-up of two years. The final change in joint line was calculated from the verified tibial resection, distal and posterior femoral cuts. Group A patients had joint line changes of less than 4mm and Group B patients had joint line changes of more than 4mm. Postoperative Oxford scores, Knee scores, Function scores and SF-36 scores were obtained at six months, one year and two years post-TKA. The final range of motion and the mechanical alignment were documented. There was significant linear correlation between joint line changes and Oxford scores (p = 0.05) and Function scores (p = 0.05) at six months and Oxford scores alone at two years with increasing joint line changes having poorer outcome scores. Group A compared to Group B patients have better outcomes in terms of Oxford scores (mean 20 vs 27, p = 0.0003), Function scores (mean 69 vs 59, p = 0.03), SF-1 (mean 63 vs 50, p = 0.03), SF-2 (mean 66 vs 43, p = 0.05), SF-5 (mean 75 vs 63, p = 0.04), SF-6 (mean 84 vs 59, p = 0.003), SF-7 (mean 96 vs 83, p = 0.02), SF-8 (mean 84 vs 73, p = 0.006) and total SF-36 scores (mean 603 vs 487, P = 0.003), at six months, and Oxford scores (mean 18 vs 23, p = 0.0007) at two years. In this study, CAS is a useful intra-operative tool for assessing the final joint line in TKA. Outliers in joint line changes of ≥ 4 mm are associated with poorer clinical outcome scores.