header advert
Results 1 - 3 of 3
Results per page:

Aims

Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus.

Methods

Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 380 - 381
1 Oct 2006
Day M Cao J Li S Hayes A Hughes C Evans R Dent C Caterson B
Full Access

Introduction: Kashin-Beck disease (KBD) is a special endemic osteoarthropathy whose main pathologic changes occur in growth plate cartilage and articular cartilage of human limbs and joints where it is manifested as cartilage degeneration and necrosis. Past and current research suggests that KBD, and its endemic geographic distribution in China, is due to the combined presence of fungal mycotoxins (on stored food ingested by affected populations) and a regional selenium deficiency in the environment providing local food sources. Thus, we hypothesise that the presence of fungal mycotoxins and the absence of selenium in the diet specifically affects chondrocyte metabolism in the growth plate during limb and joint development and in articular cartilage of adults, which leads to localised tissue necrosis, and the onset of degenerative joint disease. The aim of this study was to examine the effects of mycotoxins; e.g. Nivalenol (NIV), selenium and NIV in the presence of selen! ium in in vitro chondrocyte culture systems to better understand cellular and molecular mechanisms underlying the pathogenesis of KBD.

Methods: Chondrocyte tissue cultures were established using cartilage explant cultures either in the presence or absence of selenium (0.5–1.5 microg/ml) and the mycotoxin nivalenol (0.5–1.5 microg/ml) and culture for 1 to 4 days. Medium was harvested daily at day 1 through 4 and analysed for glycosaminoglycan (GAG) release and the presence of aggrecanase or MMP activity using RT-PCR for gene expression and monoclonal antibodies that detect their respective enzyme-generated neo-epitopes on cartilage aggrecan metabolites.

Results: Our studies to date have shown that NIV exposure induces catabolic changes in chondrocyte metabolism with an increased expression of aggrecanase activity. Addition of selenium did not affect mRNA expression of the aggrecanases ADAMTS-4 & 5. Parallel studies involving immunohistochemical analyses of articular cartilage from KBD showed an increase in aggrecanase activity.

Conclusions: These studies demonstrate that induction of aggrecanase activity as one of the molecular mechanisms involved is the pathogenesis of KBD. However, the addition of selenium does not alter aggrecanase gene expression indicating that its beneficial effects are occurring in other areas of cartilage metabolism.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 413 - 413
1 Oct 2006
Hodgson P Hughes C Day M Hayes A Cao J Li S Evans R Dent C Caterson B
Full Access

Introduction: Kashin-Beck disease (KBD) is an endemic osteoarthropathy with pathological changes occurring in growth plate and articular cartilage in humans. It manifests as cartilage degeneration and necrosis. It is postulated that KBD is due to fungal mycotoxins infiltrating the diet and a regional selenium deficiency in the environment providing food sources in a broad belt across China. Previous work has established an in vitro system in which chondrocytes are cultured and an ex vivo cartilage graft is produced. Subjecting these chondrocytes to either selenium (SEL), Nivalenol (NIV) or in combination during the growth of the graft was found to alter the morphology of the cartilage graft. In addition, the quantity of the large aggregating proteoglycan, was significantly reduced in a dose dependent manner in the presence of Nivalenol. This study aimed to examine the composition of aggrecan from grafts grown in the presence of NIV or SEL alone, or in combination to better understand cellular and molecular mechanisms underlying the pathogenesis of KBD.

Methods: Chondrocytes (from 7 day old bovine cartilage) were seeded at high density in MilliCell filter inserts (12mm diameter; Millipore, MA). Cultures were maintained for 4 weeks in DMEM supplemented with 20% heat–inactivated FBS, ascorbate (100μg/ml) and TGFß2 (5ng/ml) or additionally supplemented with either SEL , NIV or both at concentrations of 0.01, 0.05 and 0.1μg/ml. Media was refreshed thrice weekly and later analysed. At 4 weeks the cartilage grafts were harvested, weighed and extracted in 4M guanidium chloride (with an inhibitor cocktail) for biochemical analysis of matrix molecules. Residues were papain digested. Glycosaminoglycan concentration was determined using the DMMB assay in all media samples, guanidine extracts and papain digests. Aggrecan and GAG composition was determined using Western blotting with a panel of antibodies recognising chondroitin sulphate (CS), keratan sulphate (KS) and protein core epitopes present in aggrecan.

Results: The total GAG synthesised in a 4week period was substantially reduced in chondrocytes cultured in the presence of NIV at 0.05 and 0.1μg/ml and to a lesser extent in those cultures exposed to the highest dose of SEL. However, the amount of GAG released into the media remained fairly constant within the treatment groups, but a marked reduction was apparent in the guanidine extracts of the cartilage grafts. Western blot analysis with a series of antibodies on guanidine extracted aggrecan showed no substantial changes in the core protein molecular weights however analysis demonstrated that KS was reduced in NIV treated cultures. Results also indicated that NIV treated cultures appeared to contain less CS substitutions on the aggrecan core protein.

Discussion: The GAG concentration data indicates that there is an inability of the GAG to remain within the cartilage grafts extracellular matrix. when treated with NIV. Western blot analysis indicates minor changes in the composition of the aggrecan in relation to protein core length and CS/KS side chain substitutions or length. Further work will investigate the proportion of aggrecan able to form high molecular weight aggregates, the metabolism of link protein and hyaluronan.