Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 14 - 14
1 Apr 2018
Van Der Straeten C Abdulhussein D Brevadt M Cobb J
Full Access

Background

Hip resurfacing arthroplasty (HRA) and total hip arthroplasty (THA) are treatments of end-stage hip disease. Gait analysis studies comparing HRA and THA have demonstrated HRA results in a more normal gait than THA. The reasons may include the larger, more anatomic head diameter, the preservation of the femoral neck with restoration of the anatomical hip centre position and normal proprioception. This study investigated (1)whether femoral head size diameter affects gait; (2)whether gait still differs between THA and HRA patients even with comparable head diameters.

Methods

We analysed the gait of 33 controls and 50 patients with unilateral hip replacement. Follow-up ranged from 9–68 months. In 27 hips a small femoral head size was used (≤ 36mm); in 23 hips a large head size (>36mm). The small size group consisted of 11 long femoral stem THA and 16 short-stem THA; the large group of 5 long-stem, 8 short-stem THA and 10 HRA patients. There were 14 females/19 males in the control group; 22 females/5 males in the small size group; 13 females/10 males in the large size group.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 18 - 18
1 Apr 2018
Farrokhnik R Wiik A Brevadt M Lambkin R Cobb J
Full Access

The use of hip resurfacing arthroplasty (HRA) has largely regressed due to the fear of metal-on-metal bearings. However committed HRA users continue to assert the functional advantages that a geometry retaining implant would have on a patient”s hip. Currently worldwide, HRA is only recommended to men who demand an active lifestyle. Despite this precarious indication, it is not clear to what extent HRA has on higher activity function. The aim of this study was to determine the functional extent to which could be achieved with HRA. The primary objective is to assess the loading pattern change for patients implanted with HRA at high walking speeds and inclinations. The second objective is to compare their loading features to a healthy group to determine if a normal gait pattern could be achieved.

Between 2012 and 2016, a total of 28 prospective unilateral HRA patients were analysed on an instrumented treadmill from a single centre. All 28 patient patients had a uniform implant type and had no other lower limb operations or disease. Perioperative plain orthogonal radiographs were used to measure hip length and global hip offset change. A healthy control group (n=35) were analysed to compare. All HRA patients gait characteristics were assessed at incrementally higher speeds and inclinations to determine the extent of improvement HRA has on a challenging activity. A Student t-test along with a multivariate analysis was done with significance set at α=0.05. Weight and height variance was accounted with Hof normalisation.

The HRA and control group were reasonably matched for age (57 vs 55yrs), BMI (27 vs 25) and height (175 vs 170cm) respectively. Hip measurements revealed less than 5mm change for all cases. The mean time from initial preoperative gait assessment to postoperative assessment was 30 months (24–48months). The mean top walking speed for controls was 1.97m/s and postoperatively 2.1 m/sec for the HRA group. The significant (p<0.001) loading change during flat walking can be seen with restoration of symmetry. Walking at an inclination demonstrated a marked change during weight acceptance (p<0.001) and a loading pattern returning to near normal.

This prospective study found HRA patients walking faster than age matched controls. They demonstrated a significant change in their loading pattern, by significantly shifting load from the unaffected side to the implanted side. Uphill walking, an activity which requires more hip flexion, demonstrated a change in stance phase which was near normal. This small comparative study confirms near physiological function can be achieved with HRA at higher activity levels.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 5 - 5
1 Jan 2017
Brevadt M Wiik A Aqil A Johal H Van Der Straeten C Cobb J
Full Access

Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established hip resurfacing and long stem total hip replacement (THR) implants.

110 subjects were tested on an instrumented treadmill (Kistler Gaitway, Amherst, NY), 4 groups (short-stem THR, long-stem THR, hip resurfacing and healthy controls) of 28, 29, 27, and 26 respectively. The new short femoral stem patients (Furlong Evolution, JRI) were taken from the ongoing Evolution Hip trial that have been tested on the treadmill with minimum 12months postop. The long stem total hip replacements and hip resurfacing groups were identified from out 800 patient gait database. They were only chosen if they were 12 months postop and had no other joint disease or medical comorbidities which would affect gait performance.

All subjects were tested through their entire range of gait speeds and incline after having a 5 minute habituation period. Speed intervals were at 0.5kms increments until maximum walking speed achieved and inclines at 4kms for 5, 10, 15%. At all incremental intervals of speed, the vertical component of the ground reaction forces, center of pressure and temporal measurements were collected for both limbs with a sampling frequency of 100Hz. Body weight scaling was applied to correct for mass differences and a symmetry index to compare the implanted hip to the contralateral normal hip. All variables for each subject group were compared to each other using an analysis of variance (ANOVA) with Tukey post hoc test with significance set at α=0.05.

The four experimental groups were reasonably matched for demographics and the implant groups for PROMs. Hip resurfacing had a clear top walking speed advantage, but when assessing the symmetry index on all speeds and incline, all groups were not significantly different. Push-off and step length was statistically less favourable for the short/long THR group (p=0.005–0.05) depending on speed/incline.

The primary aim of this study was determine if implant design affected gait symmetry and performance. Interestingly, irrespective of implant design, symmetry with regards to weight acceptance, impulse, push-off and step length was returned to normal when comparing to healthy controls. However individual implant performance on the flat and incline, showed inferior (p<0.05) push-off force and step length in the short stem and long stem THR groups when compared to controls. Age and gender may have played a part for the short stem group. It appears that the early gait outcomes for the short stem device are promising. Assessment at the 3 year mark should be conclusive.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 36 - 36
1 Jan 2017
Owyang D Dadia S Jaere M Auvinet E Brevadt M Cobb J
Full Access

The aim of this project is to test the parameters of Patient Specific Instruments (PSIs) and measuring accuracy of surgical cuts using sawblades with different depths of PSI cutting guide slot.

Clear operative oncological margins are the main target in malignant bone tumour resections. Novel techniques like patient specific instruments (PSIs) are becoming more popular in orthopaedic oncology surgeries and arthroplasty in general with studies suggesting improved accuracy and reduced operating time using PSIs compared to conventional techniques and computer assisted surgery. Improved accuracy would allow preservation of more natural bone of patients with smaller tumour margin. Novel low-cost technology improving accuracy of surgical cuts, would facilitate highly delicate surgeries such as Joint Preserving Surgery (JPS) that improves quality of life for patients by preserving the tibial plateau and muscle attachments around the knee whilst removing bone tumours with adequate tumour margins. There are no universal guidelines on PSI designs and there are no studies showing how specific design of PSIs would affect accuracy of the surgical cuts. We hypothesised if an increased depth of the cutting slot guide for sawblades on the PSI would improve accuracy of cuts.

A pilot drybone experiment was set up, testing 3 different designs of a PSI with changing cutting slot depth, simulating removal of a tumour on the proximal tibia. A handheld 3D scanner (Artec Spider, Luxembourg) was used to scan tibia drybones and Computer Aided Design (CAD) software was used to simulate osteosarcoma position and plan intentioned cuts. PSI were designed accordingly to allow sufficient tumour. The only change for the 3 designs is the cutting slot depth (10mm, 15mm & 20mm). 7 orthopaedic surgeons were recruited to participate and perform JPS on the drybones using each design 2 times. Each fragment was then scanned with the 3D scanner and were then matched onto the reference tibia with customized software to calculate how each cut (inferior-superior-vertical) deviated from plan in millimetres and degrees. In order to tackle PSI placement error, a dedicated 3D-printed mould was used.

Comparing actual cuts to planned cuts, changing the height of the cutting slot guide on the designed PSI did not deviate accuracy enough to interfere with a tumour resection margin set to maximum 10mm. We have obtained very accurate cuts with the mean deviations(error) for the 3 different designs were: [10mm slot: 0.76 ± 0.52mm, 2.37 ± 1.26°], [15 mm slot: 0.43 ± 0.40 mm, 1.89 ± 1.04°] and [20 mm: 0.74 ± 0.65 mm, 2.40 ± 1.78°] respectively, with no significant difference between mean error for each design overall, but the inferior cuts deviation in mm did show to be more precise with 15 mm cutting slot (p<0.05).

Simulating a cut to resect an osteosarcoma, none of the proposed designs introduced error that would interfere with the tumour margin set. Though 15mm showed increased precision on only one parameter, we concluded that 10mm cutting slot would be sufficient for the accuracy needed for this specific surgical intervention. Future work would include comparing PSI slot depth with position of knee implants after arthroplasty, and how optimisation of other design parameters of PSIs can continue to improve accuracy of orthopaedic surgery and allow increase of bone and joint preservation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 58 - 58
1 May 2016
Brevadt M Manning V Wiik A Aqil A Dadia S Cobb J
Full Access

Introduction

Femoral component design is a key part of hip arthroplasty performance. We have previously reported that a hip resurfacing offered functional improved performance over a long stem. However resurfacing is not popular for many reasons, so there is a growing trend towards shorter femoral stems, which have the added benefit of ease of introduction through less invasive incisions. Concern is also developing about the impact of longer stems on lifetime risk of periprosthetic fracture, which should be reduced by the use of a shorter stem. For these reasons, we wanted to know whether a shorter stem offered any functional improvement over a conventional long stem. We surmised that longer stems in hip implants might stiffen the femoral shaft, altering the mechanical properties.

Materials and Methods

From our database of over 800 patients who have been tested in the lab, we identified 95 patients with a hip replacement performed on only one side, with no other lower limb co-morbidities, and a control group:

19 with long stem implant, age 66 ± 14 (LONG)

40 with short stem implant, age 69 ± 9 (SHORT)

26 with resurfacing, age 60 ± 8 (RESURF)

43 healthy control with no history of arthroplasty, age 59 ± 10 (CONTROL)

All groups were matched for BMI and gender.

Participants were asked to walk on an instrumented treadmill. Initially a 5 minute warm up at 4 km/h, then tests at increasing speed in 0.5 km/h increments. Maximum walking speed was determined by the patients themselves, or when subjects moved from walking to running.

Ground reaction forces (GRF) were measured in 20 second intervals at each speed. Features were calculated based on the mean GRF for each trial, and on symmetry measures such as first peak force (heel strike), second peak force (toe-off), the rate at which the foot was loaded and unloaded, and step length.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 90 - 90
1 May 2016
Cobb J Collins R Brevadt M Auvinet E Manning V Jones G
Full Access

Normal human locomotion entails a rather narrow base of support (BoS), of around 12cm at normal walking speeds. This relatively narrow gait requires good balance, and is beneficial, as it minimises the adduction moment at the knee. Normal knees have a slightly oblique joint line, and slight varus, which allow the normal human to walk rapidly with a narrow BoS. Patients with increased varus and secondary osteoarthritis have a broader BoS, which exacerbates the excessive load, making walking painful and ungainly.

We wondered if there would be a difference between the base of support of patients whose knee kinematics had been preserved, by retaining the native jointline obliquity and the acl, in comparison with those whose alignment had been altered to a mechanically correct ‘neutral’ alignment.

Materials and Methods

Of 201 patients measured following knee arthroplasty, 31 unicondylar patients and 35 total knee patients, with a single primary arthroplasty, and no co-morbidities, over 1 year post-operatively were identified. Two control groups of controls, a younger cohort of 112 people and 17 in an age matched older cohort.

All operations were performed by the same surgeon. The total knees were cruciate retaining devices, inserted in mechanical alignment, and the unicondylar knees were inserted retaining the native alignment and joint-line obliquity.

The gait of all subjects was analysed on an instrumented, calibrated treadmill with underlying force plates. Patients start by walking at a comfortable speed for them for 5 minutes, before the speed of the treadmill is increased at 1/2 km/h increments until maximum walking speed obtained, spending 30 seconds at each. After the flat test, it was then repeated on a downhill slope of 6°.

Base of Support is interpreted as the distance between the centre point of heel strike and toe off from one foot to that of the other.

The top walking speed in the unicondylar group was significantly greater than that of the total knee group, as we reported in 2013.

TKA patients have an average BoS of 14cm, while UKA patients and controls have a 12cm BoS. The BoS did not reduce with speed. This 2cm, or 17% increase in BoS is significant. Shapiro-Wilk tests demonstrate a normal distribution to the results, and ANOVA testing reveals a significant difference (p<0.05) within the groups between the speeds of 4.5 to 9. Post-Hoc Bonferroni testing reveal a significant difference between the TKA group and each of the other three groups.

On the downhill test (figure 1), the mean BoS in the TKA group increased to 16cm. This increase is highly significant, with a p value of <0.001, while the increase in the UKA group at higher speeds failed to reach significance, and the controls both stayed at 12cm. 6 Bi-uni knees tested acted just like the UKAs.

Discussion

A narrow base of support minimises excessive loads across the joint line. Maintenance of jointline obliquity and an ACL enables this feature to be returned to normal following uni, or bi-uni, while a well aligned TKA seems to prevent it.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 89 - 89
1 May 2016
Cobb J Collins R Wiik A Brevadt M Auvinet E Manning V
Full Access

Any arthroplasty that offers superior function needs to be assessed using metrics that are capable of detecting those functions. The Oxford Hip Score (OHS), the Harris Hip Score (HHS) and WOMAC are patient reported outcome measures (PROMs) with well documented ceiling effects: following hip arthroplasty, many patients are clustered close to full marks following surgery. Two recent well conducted randomised clinical trials made exactly this error, by using OHS and WOMAC to detect a differences in outcome between hip resurfacing and hip arthroplasty despite published data already showing in single arm studies that these two procedures score close to full marks using either of these PROMS.

We have already reported that patients with hip resurfacing arthroplasty (HRA) were able to walk faster and with more normal stride length than patients with well performing hip replacements. In an attempt to relate this functional superiority to an outcome measure that does not rely upon the use of expensive machinery, we developed a patient centred outcome measure (PCOM) based upon a method developed by Philip Noble's group, and the University of Arizona's Metabolic Equivalent of Task Index (MET). This PCOM allows patients to select the functions that matter to them personally against which the success of their own operation will be measured, with greater sensitivity to intensity than is achieved by the UCLA.

Our null hypothesis was that this PCOM would be no more successful than the PROMs in routine use in discriminating between types of hip arthroplasty, and that there would be no difference in gait between patients following these procedures.

From our database of over 800 patients whose gait has been assessed in the lab, we identified 22 patients with a well performing conventional THAs, and matched them for age, sex, BMI, height, preop diagnosis with 22 patients with a well performing conventional THA. Both were compared with healthy controls using the novel PCOM and in a gait lab.

Results

PROMs for the two groups were almost identical, while HRA scored higher in the PCOM. The 9% difference was significant (p<0.05). At top walking speed, HRA were 10% faster, with a 9% longer stride length, both of these metrics also reached significance.

Discussion

Function following hip replacement is very good, with high satisfaction rates, but the use of a PCOM, and objective measures of function reveal substantial inferiority of THA over THR in two well matched groups. This 9% difference is well over the 5% difference that is considered ‘clinically relevant’. When coupled with the very strong data regarding life expectancy and infection, this functional data makes a compelling case for the use of resurfacing in active adults.