Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 34 - 34
1 Sep 2014
Schepers A v d Jagt D Breckon A
Full Access

Purpose Of Study

The study was started in 2004 to determine the best bearing surface in the long term, and to measure the metal ion levels generated by each of the bearing surfaces. We present the latest updated results.

Material and methods

A prospective randomised study was started in 2004 to compare the wear characteristics of Ceramic on X linked Polyethylene (C.O.P.), Ceramic on Ceramic (C.O.C), Ceramic on Metal (C.O.M.) and Metal on Metal (M.O.M) bearings. The level of Cobalt and Chrome ions in red blood cells have been documented at serial intervals, using the ICP – MS method. Aside from the bearing surfaces the rest of the implant is standard, using a Pinnacle Cup, Corail Stem and 28mm heads.

256 Cases were enrolled on the study. To date 71 cases have been lost due to death (26), revision (9) and lost to follow up (36), leaving us with 185 for follow-up. An even spread of cases in each bearing surface are still available for follow up, viz. 46 C.O.P, 48 C.O.C., 44 C.O.M. and 47 M.O.M. Average follow up is currently 4.8 years, ranging up to 9 years.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 511 - 511
1 Oct 2010
Brockett C Breckon A Fisher J Isaac G Schepers A Williams S
Full Access

Ceramic-on-metal (COM) bearings have shown reduced wear and friction compared with metal-on-metal (MOM) bearings in-vitro. Lower wear has been attributed to a reduction in corrosive wear, smoother surfaces, improved lubrication and differential hardness reducing adhesive wear. Clinical studies have also shown reduced metal ion levels in-vivo compared with MOM bearings. The aim of this study was to examine two explanted COM bearings (one head and cup, one head only), and to assess the effect of in-vivo changes on the wear performance of the COM bearings by comparing the wear of the explanted bearings with three new COM implants in a hip wear simulator.

Two 28mm diameter COM bearings were provided for analysis. These were visually examined and surface profilometry was performed using a 2-D contacting profilometer (Form Talysurf, Taylor Hobson, UK). Scanning electron microscopy was used to image the regions of transfer on the ceramic heads, and EDX to assess the transfer composition (Philips XL30 ESEM).

Hip simulator testing was conducted for 2 million cycles (Mc) comparing the explanted bearings with three new 28mm COM bearings. Tests were performed in a Prosim simulator (SimSol, UK), which applied a twin peak loading cycle, with a peak load of 3kN. Flexion-extension of − 15 to 30 degrees was applied to the head and internal-external rotation of +/− 10 degrees was applied to the cup, components were mounted in the anatomical position. The lubricant was 25% (v/v) calf serum supplemented with 0.03% (w/v) sodium azide and was changed approximately every 0.33Mc. Wear was measured gravimetrically at 0.5, 1 and 2 Mc.

Regions of material transfer, identified on both ceramic explant heads, were shown to be CoCr material by EDX analysis, suggesting metallic transfer from the metal cup. Profilometry traces across metallic transfer showed comparable surface roughness measurements compared to unworn material.

The overall mean wear rate for the new COM bearings at 2Mc was 0.047 ± 0.06mm3/Mc. The mean wear rate for the explanted head articulated with a new cup was slightly lower at 0.034mm3/Mc. The mean wear rate for the explanted head and cup was highest at 0.15mm3/Mc. It was noted that the explanted head/cup had higher bedding in wear compared with the other bearings, but still significantly less than a new MOM bearing (mean bedding-in wear rate 2.03 ± 2.59 mm3/Mc). The steady-state wear was comparable with the new bearings. As the orientation of these implants in-vivo was unknown, it is proposed that the elevated wear during bedding-in of the explanted head/cup bearing may be due to the alignment of the components. The wear rates of the explanted ceramic head against a new cup were comparable with the new bearings, suggesting that the presence of metallic transfer on the ceramic head does not adversely affect the wear behaviour of COM bearings.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 520 - 520
1 Oct 2010
Isaac G Breckon A Brockett C Fisher J Schepers A Van Der Jagt D Williams S
Full Access

The combination of a ceramic head articulating against a metal acetabular liner (CoM) has shown reduced metal ion levels compared with a metal-on-metal bearing (MoM) in hip simulator studies. A randomized prospective clinical trial was undertaken using CoM and MoM bearings in an otherwise identical total hip procedure. The initial clinical results were encouraging. This report comprises a further review of metal ion data.

Patients received identical components with the exception of the bearing surface material but all were 28mm diameter. All components were supplied by DePuy International Ltd. Patients were assessed pre-operatively, 3m, 12m and > 24m (median 32m). Whole blood samples were collected at regular follow-ups, frozen and analysed in batches using high resolution Inductively Coupled Plasma – Mass Spectrometry (ICP-MS). All recruited patients are included irrespective of outcome. However some patients failed to attend specific follow-ups and some contaminated samples had to be discarded. Statistical significance was analyzed using a non-parametric comparison (Mann-Whitney test). After 3m and 12m implantation there were between 21 and 24 patients available for analysis in both the CoM and MoM cohort and after > 24m point 10 and 9 respectively.

There were four outliers (either Cr or Co > 10ug/l) in both the CoM and MoM groups. In common with previous studies (with the exception of two marginal outliers), these were related to component position. They were implanted with either a cup abduction angle of > 55°, an anteversion angle of > 30° or both. Other studies with the same design of component have reported no significant outliers.

The median Cr and the Co levels are lower with the CoM bearing compared with the MoM at all measurements points following implantation. The median background (pre-operative) levels for the combined CoM and MoM group were Cr: 0.22ug/l and Co: 0.49ug/l. These were significantly different (p=0.006).

In the CoM group, the median 12m Cr and Co values were 0.43ug/l and 0.72ug/l respectively. The comparable values for MoM are 0.68ug/l and 0.83ug/l. Increases in metal ion levels from pre-operative levels are used as the primary ion level outcome in this study because the background level will comprise of the order of 30–50% of the overall value. The increase in Cr for CoM and MoM from pre-op levels to 12m significantly different for Cr (p=0.015). It has a lower significance for combined metal ion levels (p=0.029). This difference in not significant for Co (p=0.195).

In agreement with predictions from hip simulator studies, CoM bearings in this study produced lower levels of metal ions than comparable MoM bearings at all time points. However the difference is less than that predicted in the laboratory and is much more pronounced with Cr than with Co.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 187 - 187
1 Mar 2010
Schepers A Jagt DV Breckon A Williams S Fisher J Isaac G
Full Access

A randomised prospective study of 4 bearing surfaces in hip replacements is being conducted. The primary objective is to identify the best long term bearing surface clinically and radiographically, and metal ion levels have been measured in all cases.

Patieents have been randomised to the 4 bearing surfaces viz. Ceramic on XLinked Poly, Ceramic on Ceramic, Metal on Metal and Ceramic on Metal. Pre operative blood samples and follow up blood samples for metal ion analysis using the ICPMS method have been taken in all patients. As at February 2008 187 patients have been recruited, and metal ion levels at 1 year are available in 52 patients.

Metal ion levels are not increased with Ceramic on XLinked Poly or Ceramic on Ceramic bearings. At 1 year follow up the metal ion levels in Ceramic on Metal bearings is half that of Metal on Metal bearings using the mean levels, and one third using the madian levels. Of note is that the chromium levels in Ceramic on Metal bearings is the least elevated.

Due to laboratory evidence that Ceramic on Metal bearings have the best surface wear characteristics with no head stripe wear, and laboratory and clinical evidence of lower metal ion blood levels, Ceramic on Metal hip replacements could be a bearing surface of the future.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1134 - 1141
1 Sep 2009
Isaac GH Brockett C Breckon A van der Jagt D Williams S Hardaker C Fisher J Schepers A

This study reports on ceramic-on-metal (CoM) bearings in total hip replacement. Whole blood metal ion levels were measured. The median increase in chromium and cobalt at 12 months was 0.08 μg/1 and 0.22 μg/1, respectively, in CoM bearings. Comparable values for metal-on-metal (MoM) were 0.48 μg/1 and 0.32 μg/1. The chromium levels were significantly lower in CoM than in MoM bearings (p = 0.02). The cobalt levels were lower, but the difference was not significant. Examination of two explanted ceramic heads revealed areas of thin metal transfer. CoM bearings (one explanted head and acetabular component, one explanted head and new acetabular component, and three new heads and acetabular components) were tested in a hip joint simulator. The explanted head and acetabular component had higher bedding-in. However, after one million cycles all the wear rates were the same and an order of magnitude less than that reported for MoM bearings. There were four outliers in each clinical group, primarily related to component malposition.