Knee prostheses retrieved at revision often show patterns and severity of damage neither seen nor predicted from standard wear simulator testing. We hypothesized that this is because these implants are exposed to combinations of loads and motions that are more damaging than the simple loading profiles utilized in laboratory testing. We examined the magnitude, direction, and combination of forces and moments acting on the knee during various activities in order to guide the future development and testing of high-performance knee replacements. In vivo data from five patients with instrumented tibial implants were obtained from an open database (www.orthoload.com). We determined the direction and magnitude of forces and moments that the knee experiences during the following common physiologic activities: stair descent, stair ascent, deep knee bend, one leg stance, and walking. In order to capture the loading pattern, we investigated the three component forces and moments acting on the knee at several high demand points for each of these activities. The e-tibia data were compared to the loading profiles used in conventional laboratory testing (ISO 14243-1).Introduction
Methods