Several studies have reported elevated blood cobalt (Co) and chromium (Cr) concentrations in patients with total knee replacements (TKRs). Up to 44% of tissue samples taken from patients with failed TKRs exhibit histological evidence of metal sensitivity/ALVAL. In simulated conditions, metal particles contribute approximately 12% of total wear debris in TKR. We carried out this investigation to determine the source and quantity of metal release in TKRs. We analysed 225 explanted fixed-bearing TKRs (Attune, Genesis II, NexGen, PFC, and Vanguard) revised for any indication. These were analysed using peer-reviewed [coordinate measuring machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D profilometry (surface roughness-Ra) and light microscopy. Histological and blood metal ion concentration analyses were performed in a sub-sample of patients.Objectives
Design and Methods
Unicompartmental knee replacement (UKR) is a conservative option for degenerative disease, with mobile (Oxford UKR) and fixed bearing (Physica ZUK) the most commonly used devices. The primary reasons for revising UKRs include disease progression (36.9%), loosening (31.7%), and pain (7.5%). Loosening typically occurs due to osteolysis caused by wear particles from the polyethylene (PE) inserts. There is limited published literature which has quantified volumetric material loss from the PE inserts of cemented fixed-bearing UKRs. This study aimed to quantify bearing wear and backside deformation of these PE components. At our national retrieval centre, we measured changes volumetric bearing wear and backside deformation of 31 explanted fixed-bearing Physica ZUK UKR PE inserts using a peer-reviewed methodology based on coordinate measuring machine analysis. These explants had been revised for any indication [Females (19) and Males (12)]. The location of the wear scars was identified and mapped. We compared the volumetric wear from the bearing surface with contemporary total knee replacement (TKR) inserts.Objectives
Design and Methods
We identified an unusual pattern of backside deformation on polyethylene (PE) inserts of contemporary total knee replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with NexGen central-locking trays. This backside deformation was significantly associated with tray debonding. Furthermore, recent studies have shown high rate of tray debonding in PS NexGen TKRs. Subsequently, a field safety notice was issued regarding the performance of this particular device combination and the Option tray has been withdrawn from use. Therefore, we hypothesised that the backside deformation of PS inserts may be greater than that of CR inserts. At our national implant retrieval centre, we used peer-reviewed techniques to analyse changes in the bearing wear rate and backside surface deformation of NexGen PE inserts using coordinate measuring machines [N=84 (CR-43 and PS-41) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software.Objectives
Design and Methods
Despite advancements, revision rates following total ankle replacement (TAR) are high in comparison to other total joint replacements. This explant analysis study aimed to investigate whether there was appreciable metal particulate debris release from various contemporary TARs by describing patterns of material loss. Twenty-eight explanted TARs (9 designs: 3 fixed and 6 mobile bearing), revised for any reason, were studied. The articulating surfaces of the metal tibial and talar components as well as the polyethylene insert were assessed for damage features using light microscopy. Based on the results of the microscopic analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy was performed to determine the composition of embedded debris identified, as well as non-contacting 3D profilometry. Pitting, indicative of material loss, was identified on the articulating surfaces of 54% of tibial components and 96% of talar components. Bearing constraint was not found to be a factor, with similar proportions of fixed and mobile bearing metal components showing pitting. More cobalt-chromium than titanium alloy tibial components exhibited pitting (63% versus 20%). Significantly higher average surface roughness (Sa) values were measured for pitted areas in comparison to unpitted areas of these metal components (p<0.05). Additionally, metallic embedded debris (cobalt-chromium likely due to pitting of the tibial and talar components or titanium likely from loss of their porous coatings) was identified in 18% of polyethylene inserts. The presence of hard 3rd body particles was also indicated by macroscopically visible sliding plane scratching, identified on 79% of talar components. This explant analysis study demonstrates that metal debris is released from the articulating surfaces and the coatings of various contemporary TARs, both fixed and mobile bearing. These findings suggest that metal debris release in TARs may be an under-recognised issue that should be considered in the study of painful or failed TAR moving forwards.
At our national explant retrieval unit, we identified an unusual pattern of backside-deformation on polyethylene (PE) inserts of contemporary total-knee-replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with central-locking trays. We reported that this backside-deformation appeared to be linked to tray debonding. Moreover, recent studies have shown high-rate of tray debonding in PS NexGen TKRs. Therefore, we hypothesised that backside deformation on PS inserts may be more than on CR inserts. We used peer-reviewed techniques to analyse changes in the bearing (wear rate) and backside surfaces (deformation) of PE inserts using coordinate measuring machines [N=61 NexGen (CR-39 and PS-22) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside-deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software.Abstract
Introduction
Methodology
Several studies have reported significant cobalt(Co) and chromium(Cr) elevations in the blood of patients with total-knee-replacements (TKRs), and histological signs of metal sensitivity have been reported in up to 44% of patients undergoing revision of their TKRs. We carried out this investigation to determine the source and quantity of metal release in TKRs. We identified all TKRs with polished CoCr trays (N=59) [Vanguard=29, Attune=4 and PFC=26]. These were analysed using peer-reviewed [coordinate-measuring-machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D-profilometry (surface roughness-Ra) and 4D-microscopy. Histological and blood metal ion concentration analyses were performed.Abstract
Introduction
Methodology
Cobalt chrome alloy is commonly used in joint replacement surgery. However, it is recognised that some patients develop lymphocyte mediated delayed type hypersensitivity (DTH) responses to this material, which may result in extensive bone and soft tissue destruction.
A total of 606 DNA samples, from 397 males and 209 female patients, were typed. This included 176 from patients with failed prostheses, and 430 from asymptomatic patients at a mean of >10 years follow up. C-index and ROC(t) scores suggested a high degree of discrimination, whilst the IBS indicated good calibration and further backed up the indication of high discriminatory ability. At ten years, the weighted mean survival probability error was < 4%. At present, there are no tests in widespread clinical use which use a patient's genetic profile to guide implant selection or inform post-operative management. The algorithm described herein may address this issue and we suggest that the application may not be restricted to the field of MoM hip arthroplasty.
Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm3) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates).Introduction
Methods
The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc). BIOLOX®delta ceramic femoral heads were mounted on 12/14 titanium (Ti6Al4V) trunnions. Wear of femoral heads, acetabular liners and trunnions was determined gravimetrically using the analytical balance. Roughness measurements (Sa) were taken on the articulating surfaces (pre and post-test) and on the trunnion surfaces (worn and unworn). Furthermore, Energy Dispersive X-ray Spectroscopy (EDX) was used to identify and quantify the wear debris present in the lubricant using scanning electron microscope (SEM).Introduction
Methods