header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 76 - 76
1 Jul 2014
Thakkar S Langdale E Mears S Belkoff S
Full Access

Summary

A rotational limit for screw insertion may improve screw purchase and plate compression by reducing stripping, as compared to a torque based limit.

Introduction

Over-tightening screws results in inadvertent stripping of 20% of cortical bone screws. The current method of “two-fingers tight” to insert screws relies on the surgeon receiving torque feedback. Torque, however, can be affected by screw pitch, bone density and bone-thread friction. An alternative method of tightening screws is the “turn-of-the-nut” model, commonly used in engineering applications. In the “turn-of-the-nut” method, nuts used to fasten a joint are rotated a specific amount in order to achieve a pre-specified bolt tension. When applied to orthopaedics, bone assumes the role of the nut and the screw is the bolt. The screw is turned a set angular rotation that is independent of torque feedback. Potentially the “turn-of-the-nut” method provides an easier way of screw insertion that might lessen inadvertent screw stripping. The purpose of the current study was to use the “turn-of-the-nut” method to determine the angular rotation that results in peak plate compression and peak screw pullout force.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1460 - 1465
1 Oct 2010
Rauh PB Clancy WG Jasper LE Curl LA Belkoff S Moorman CT

We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method.

Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury.