For preoperative planning of Total Hip Arthroplasty (THA) it is paramount to choose the correct implant size to avoid subsidence with too small a component or fracture with too large a component. This planning can be done either in 2D or 3D. 2D templating from X-rays frontal images remains the gold standard technique in THA preoperative planning despite the lower accuracy with uncemented components. 3D planning techniques require a CT-Scan examination overexposing patients to radiation. Biplanar EOS® radiographs are an alternative to obtain bone 3D reconstructions with a very low dose of radiation. The objective of this study was to evaluate the accuracy and reproducibility a novel 3D technique for THA preoperative planning based on biplanar low-dose radiographs. 31 patients (20 women, 11 men, average age 66.1 y/o) who underwent a primary THA (Hardinge anterolateral approach) were included. Two senior orthopedic surgeons (Op_1 and Op_2) performed the pre-operative planning: (1) In 2D superimposing templates of the cup and the stem on CR radiographs. The CR images had a magnification coefficient of 1.15. (2) In 3D using dedicated hipEOS (EOS Imaging, France) software. 2D planning was performed once by each operator, 3D planning twice. 3D planning with hipEOS [Figure 1] was performed by importing 3D models of the stem and cup and superimposing them on frontal-lateral EOS® radiographs. This software proposes an initial estimate of the components size and position. If necessary, the user can correct the size of the stem and perform translations and rotations of the 3D models in order to correct the position, while clinical parameters such as the cup anteversion and inclination, as well as the femoral offset and leg length are automatically recalculated. To evaluate the accuracy, we have compared the 2D and 3D planning with respect to the actual size implanted during the surgery. To evaluate reproducibility we have calculated the Intra-class Correlation Coefficient (ICC) of both techniques.Introduction
Materials and methods
The osteoinductive properties of demineralised
bone matrix have been demonstrated in animal studies. However, its therapeutic
efficacy has yet to be proven in humans. The clinical properties
of AlloMatrix, an injectable calcium-based demineralised bone matrix
allograft, were studied in a prospective randomised study of 50
patients with an isolated unstable distal radial fracture treated
by reduction and Kirschner (K-) wire fixation. A total of 24 patients
were randomised to the graft group (13 men and 11 women, mean age
42.3 years (20 to 62)) and 26 to the no graft group (8 men and 18
women, mean age 45.0 years (17 to 69)). At one, three, six and nine weeks, and six and 12 months post-operatively,
patients underwent radiological evaluation, assessments for range
of movement, grip and pinch strength, and also completed the Disabilities
of Arm, Shoulder and Hand questionnaire. At one and six weeks and
one year post-operatively, bone mineral density evaluations of both
wrists were performed. No significant difference in wrist function and speed of recovery,
rate of union, complications or bone mineral density was found between
the two groups. The operating time was significantly higher in the
graft group (p = 0.004). Radiologically, the reduction parameters
remained similar in the two groups and all AlloMatrix extraosseous leakages
disappeared after nine weeks. This prospective randomised controlled trial did not demonstrate
a beneficial effect of AlloMatrix demineralised bone matrix in the
treatment of this category of distal radial fractures treated by
K-wire fixation. Cite this article:
Bone allografts can be used in any kind of surgery involving bone from minor defects to major bone loss after tumour resection. This review describes the various types of bone grafts and the current knowledge on bone allografts, from procurement and preparation to implantation. The surgical conditions for optimising the incorporation of bone are outlined, and surgeon expectations from a bone allograft discussed.
Clavicular fractures are occasionally responsible for lesions of the brachial plexus. The symptoms are usually delayed and due to compression by hypertrophic callus, nonunion or a subclavian pseudoaneurysm. We describe a patient in whom a displaced bone fragment was pressing on the retroclavicular part of the brachial plexus, leading to early symptoms of a lesion of the posterior cord. Internal fixation of the clavicle and external neurolysis of the brachial plexus gave an almost full recovery.