Ankle lateral ligament complex injury is common. Traditional ‘Brostrum’ repair, performed either open or arthroscopically, still has a protracted post-operative period. The ‘Internal Brace’ provides a scaffold for the ligament repair and acts as a ‘check-rein’ preventing further injury. 16 patients with ankle instability and injury to the Anterior-Talo-Fibular-Ligament (ATFL) confirmed on MRI were identified. All had completed a period of conservative treatment. All had symptoms of pain in the region of the ATFL and described a feeling of instability. Surgery was performed under general anaesthetic and regional popliteal block. Anterior ankle arthroscopy demonstrated a positive ‘drive through’ in all cases. The ATFL was absent and in the majority replaced by incompetent scar. Scar tissue was removed from the anterior aspect of the ankle allowing visualisation of the fibula and lateral talar neck. Using the Internal Brace system (Arthrex), a 3.5mm swivel-lock with fibre-tape was placed into the fibula. With the ankle in plantar flexion, to allow appropriate tensioning, the distal end of the fibre-tape was secured to the talar neck, at a 45 degree angle, with a 4.75mm biotenodesis screw. The patient was placed into a moon-boot for 7–10 days and mobilised fully weight-bearing. Pre-op score, using EDQ-5, MOXFQ, AOFAS and visual analogue scores, with post-op PROMS were performed. All patients reported improvement in their symptoms at 6 week visit. The majority were back to normal activities at 12 weeks. The few that were not, had missed physiotherapy appointments for various reasons. There were no infections and no implant failures. Arthroscopy allows direct visualisation for accurate placement of the Internal Brace. Post-operatively recovery is expedited due to the stability provided by the ‘Brace’, permitting a more aggressive rehabilitation programme. The greatest potential is arguably for the elite athlete, where an accelerated return to full activity has significant occupational implications.
A review of current literature describes varying 10-year survival rates for the Oxford Unicompartmental Knee Replacement (Biomet Orthopedics Inc, Warsaw, Ind). Application of rigorous indications and meticulous surgical technique are two factors considered to reduce revision rates. A retrospective case-note review was conducted for 96 patients (128 knees) aged 42–89 (mean 57) who had an Oxford unicompartmental knee replacement for medial compartment osteoarthritis between January 2000 and January 2011. All procedures were performed, or directly supervised, by one 5 surgeons. The aim of the study was to ascertain the rate of revision to bicompartmental knee replacement and any associated contributory factors. Of the 128 unicompartmental knees, 10.9% were revised to either mobile- or fixed-bearing total knee replacements due to septic (0.5%) and aseptic (1.5%) loosening, patello-femoral pain (3.9%), periprosthetic fracture (0.8%) and bearing dislocation (3.1%). Of those knees requiring revision, mean patient age was 73 years, 50% had wound complications and 42% were performed by senior trainees. All patients had intact ACL and medial osteoarthritis. Mean time to revision was 2.7 years. In conclusion, revision of the unicompartmental knee was related to patient age > 65 years and early post-operative complications; grade of operating surgeon had little apparent effect.
This study was carried out to investigate the outcome of rotator cuff repair surgery in 14 centres in th UK in a randomised controlled trial. It also looked at a comparison of a long-acting absorbable suture (Panacyrl) and a non-absorbabable suture (Ethibond). All patients were treated with open repair of their rotator cuff tear with modified Mason-Allen sutures used in 83% of cases. One hundred and fifty-nine patients were included in the analysis. patients had Constant scores carried out pre-operatively, six and 12 months as well as ultrasound real time dynamic scans at eight weeks, six and 12 months. Constant pain scores, total constant scores and re-tear rates were measured. There was a significant improvement in the Constant score after rotator cuff repair surgery. However for large tears, the re-tear rate at six months is approximately 50%. Despite this high retear rate there was still a good benefit from surgery. Is the improvement in those cases with a re-tear a consequence of the sub-acromial decompression (SAD) and what would have been the outcome with an ASD alone?