header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 459 - 459
1 Sep 2012
Aydogdu S Yagci T Sezak M Sur H
Full Access

We aimed to investigate the effect of Seprafilm®, a synthetic biomembran, on the intra-articular adhesion formation in an experimental arthrofibrosis model.

Twenty male white rabbits were randomly allocated into two groups of 10 animals in each. A standard surgical procedure aiming at the development of arthrofibrosis and including medial parapatellar arthrotomy, lateral eversion of the patella, partial synovectomy and debridement of anterior of supracondylar area and patella joint surface by scalpel was performed on all rabbits' right knees. Group 1 rabbits served as controls, and in Group 2 rabbits a Seprafilm®, barrier placed into the described area. In both groups, after surgery, knee joint was immobilized by a no.5 wire suture passing from the ankle and groin and keeping the joint in 140° of flexion. At 6th week, all animals were sacrificed and adhesion formation was evaluated both macroscopically and histo-pathologically. All data were semi-quantified and analyzed statistically by Fisher's exact test.

While all rabbits in control group displayed different rates of adhesion macroscopically (62.5% severe, 25% moderate, 12.5% mild), none in the study group had it. The average macroscopic adhesion score was 2.5 ± 0.75 in control group, and 0 in Seprafilm® group. Histopathologic evaluation also revealed microscopic adhesion in all rabbits in control group, but none in Seprafilm® group. Fibroblast proliferation in Seprafilm® group (100% mild) was significantly lower than in control group (62.5% severe, 37.5% moderate) (p<0.05).

In conclusion, use of Seprafilm® as a mechanical barrier may be of value against the formation of arthrofibrosis in risky knees such as septic and traumatic ones.