Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 431 - 431
1 Nov 2011
Kobayashi K Sakamoto M Tanabe Y Sato T Ariumi A Omori G Koga Y
Full Access

Progression of osteoarthritis (OA) of the knee is related to alignment of the lower extremity. Postoperative lower extremity alignment is commonly regarded as an important factor in determining favourable kinematics to achieve success in total knee arthroplasty (TKA) and high tibial osteotomy (HTO). An automated image-matching technique is presented to assess three-dimensional (3D) alignment of the entire lower extremity for natural and implanted knees and the positioning of implants with respect to bone.

Sawbone femur and tibia and femoral and tibial components of a TKA system were used. Three spherical markers were attached to each sawbone and each component to define the local coordinate system. Outlines of the 3D bone models and the component computer-aided design models were projected onto extracted contours of the femur, tibia, and implants in frontal and oblique X-ray images. Threedimensional position of each model was recovered by minimizing the difference between the projected outline and the contour. The relative positions were recovered within −0.3 ± 0.5 mm and −0.5 ± 1.1° for the femur with respect to the tibia, −0.9 ± 0.4 mm and 0.4 ± 0.4° for the femoral component with respect to the tibial component, −0.8 ± 0.2 mm and 0.8 ±0.3° for the femoral component with respect to the femur, and −0.3 ± 0.2 mm and −0.5 ± 0.4° for the tibial component with respect to the tibia.

Clinical applications were performed on 12 knees in 10 OA patients (mean age, 72.5 years; range, 62–87 years) to check change in the 3D mechanical axis alignment before and after TKA and to measure position of the implant with regard to bone. The femorotibial angle significantly decreased from 187.8° (SD 10.5) to 175.6° (SD 3.0) (p=0.01). The 3D weight-bearing axis was drawn from the centre of the femoral head to the centre of the ankle joint. It intersected significantly medial (p=0.01) and posterior (p=0.023) point at the proximal tibia before TKA. The femoral component rotation was 3.8° (SD 3.3) internally and the tibial component rotation was 14.1° (SD 9.9) internally. Compared with a CT-based navigation system using pre-and post-operative CT for planning and assessment, the benefit to patients of our method is that the post-operative CT scan can be eliminated.