Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 33 - 33
1 Dec 2013
Cobb J Andrews B Manning V Zannotto M Harris S
Full Access

Outcome measures are an essential element of our industry: comparing a novel procedure against an established one requires a reliable set of metrics that are comprehensible to both the technologist and the layman.

We surmised that a detailed assessment of function before and after knee arthroplasty, combined with a detailed set of personal goals would enable us to test the hypothesis that less invasive joint and ligament preserving operations could be demonstrated to be more successful, and cost effective. We asked the simple question: how well can people walk following arthroplasty, and can we measure this?

Materials and methods

Using a treadmill, instrumented with force plates, we developed a regime of walking at increasing speeds and on varying inclines, both up and down hill. The data from the force plates was then extracted directly, without using the proprietary software that filtered it. Code was written in matlab script to ensure that missed steps were not mistakenly attributed to the wrong leg, automatically downloading of all the gait data at all speeds and inclines.

The pattern of gait of both legs could then be compared over a range of activities.

Results

Wide variation is seen in gait both before and after arthroplasty. The variables that are easiest to explain are these:

width of gait – this appears to be a pre-morbid variable, not easily correctible with surgery. (figure 1)

top walking speed – total knee replacement is associated with 11% lower top speeds than uni knees or normals (p < 0.05)

change in stride length with increasing speed: normal people increase their walking speed by increasing both their cadence and their stride length incrementally until a top stride length is reached. Patients with a total knee replacement do not increase their stride length at a normal rate, having to rely on increasing cadence to deliver speed increase. Patients with uni or bi-compartmental knee replacements increase speed like normal people.

Downhill gait: as many as 40% of fit patients with ‘well functioning’ total knee replacements choose not to walk downhill at all, while all fit patients with ‘well functioning’ partial replacements are able to do this. Those who can manage, can only manage 90% of the normal speed, unlike unis which are indistinguishable from normal (p < 0.05)


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 28 - 28
1 Aug 2013
Karia M Masjedi M Andrews B Jaffry Z Cobb J
Full Access

Barriers to the adoption of unicompartmental knee arthroplasty (UKA) by new consultants could be explained by its higher revision rate, to which mal-positioned components contribute. The aim of this study was to determine whether robotic technology enables inexperienced surgeons to perform accurate UKAs when compared to current conventional methods

After randomisation, sixteen trainees who had never performed UKAs performed three medial UKAs (Corin Uniglide), one per week, on dry-bone simulators by either robotic (Sculptor RGA) or conventional methods. They were instructed to match a universal 3D-CT based pre-operative plan that would result from a UKA based on the conventional jigs and operating guide. The knees were laser scanned and software used to compare the planned and actual implant positions. Feedback was given to trainees between attempts. Translational and rotational positioning errors were measured in all six degrees of freedom for both components

At all attempts robotic medial UKAs were more accurate in both translational and rotational alignments for both components reaching statistical significance (p<0.005) at all attempts for rotational errors. Considering outliers, the maximum rotational errors of the robot group was 9° and 7° for the tibial and femoral components respectively. For the conventional group this reached 18° and 16° for the tibial and femoral components respectively

Robotic technology allows inexperienced surgeons to perform medial UKAs on dry bone models with acceptable accuracy and precision on their first attempt. Conventional jigs do not. The adoption of robotic technology might provide new consultants with the confidence to offer UKAs to their patients by limiting the inaccuracies inherent in conventional equipment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 11 - 11
1 Mar 2013
Barrett A Andrews B Cobb J
Full Access

Introduction

The introduction of the Stanmore Implants Savile Row mobile-bearing UKA procedure in July 2011 marked a world first – the use of a patient-specific knee implanted with robotic technology – the Sculptor Robotic Guidance Arm (RGA). This union gives a truly personalised solution by designing an implant for each patient based upon preoperative CT data and using Sculptor RGA to prepare the bone accurately so that the implant is correctly positioned as planned. The purpose of this study is to evaluate the accuracy of Sculptor RGA both in-vitro and in-vivo. We report on the accuracy of our first clinical procedures.

Methods

In-vitro:

CTs of plastic-bones were used to create plans for Sculptor RGA, establishing a relationship between the implant position and plastic-bone (planned-transform). Sculptor RGA was then used to prepare bones for 16 UKA implants mimicking the clinical set-up. The implants were placed in the prepared bones without cement. A coordinate-measuring-arm was used to register a)the bone, and b)the implant in relation to the bone (achieved-transform). The difference between planned-and-achieved transforms gives the error in implant position.

In-vivo:

Preoperative CTs of 8 OA patients, acquired using the low-dose Imperial Knee CT protocol, were used to plan the position and the shape of the patient-specific implants. Intra-operatively, Sculptor RGA was used to register and prepare the bone and the implants were cemented in place. Post-operative CTs were also acquired. Two techniques were used to measure planned-to-achieved positions of the implants: 1). Preoperative-to-postoperative CT image registration followed by extraction of the achieved implant position and comparison with the plan, 2). Surface-to-surface registration of bone-models segmented from the preoperative and postoperative CTs followed by extraction of the achieved implant position and comparison with the plan.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 71 - 71
1 Jan 2013
Andrews B Aqil A Manning V Cobb J
Full Access

Background

The combination of patient-specific “just-in-time” implant manufacture and robotic technology has not yet been reported. The robot enables accurate placement of anatomically-matched implants. It should be cost-effective, simplify the procedure, and reduce instrumentation. The aims of this study were to determine whether the procedure was safe, radiographically accurate, and comparable in time and cost to conventional arthroplasty.

Methods

All patients over 3 months post-op were included. Component position, orientation and size were determined from CT scans by the surgeon prior to manufacture. The implants were inserted using the Sculptor robot, which is supplied free of cost (Savile Row, Stanmore Implants, UK). Following registration, bone was milled away using a high-speed burr under haptic control of the robot. The implants were cemented and a mobile bearing inserted. Patients were followed up clinically and radiographically. Oxford and EQ-5D scores were obtained. Costs of the implant, instruments, and consumables were calculated and compared to published data for conventional UKA and TKA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 120 - 120
1 Feb 2012
Nawabi D Mann H Lau S Wong J Andrews B Wilson A Ang S Goodier W Bucknill T
Full Access

On 7 July 2005, four bombs were detonated on the London transport system. Three of these bombs exploded almost simultaneously at 08:50h affecting the underground tube network at Aldgate, King's Cross and Edgware Road stations. The fourth bomb exploded at 09:47h on a double-decker bus in Tavistock Square. There were 54 deaths in total at the scenes and over 700 injured.

194 patients were brought to the Royal London Hospital. 167 were assessed in a designated minor injuries unit and discharged on the same day. 27 patients were admitted of whom 7 required ITU care, 1 died in theatre and 1 died post-operatively. The median Injurity Severity Score (ISS) in this group of patients was 6 (range 0-48) and the mean ISS was 12. The general pattern of injury in the critically ill patients was of mangled lower limbs and multiple, severely contaminated fragment wounds. Hepatitis B prophylaxis was administered to those patients with wounds contaminated by foreign biological material. 11 primary limb amputations were performed in 7 patients. 9 limb fasciotomies, 5 laparotomies and 1 sternotomy were carried out. 3 patients had blast lung injury. All patients who underwent primary amputations and debridement received further regular inspections in theatre. These inspections formed the majority of our theatre work. Under no circumstance was initial reconstructive surgery attempted. Delayed primary closure and split skin grafting of all wounds was completed by the end of the second week. There have been no sepsis-related deaths.

Our experience at The Royal London has allowed us to revisit the principles of blast wound management in a peacetime setting. A number of lessons were learned regarding communication and resource allocation. A multi-disciplinary approach with the successful execution of a major incident plan is the key to managing an event of this magnitude.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 6 | Pages 932 - 933
1 Nov 1992
Bhamra M Hulme A Hutton P Andrews B Muirhead-Allwood W


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 2 | Pages 288 - 292
1 Mar 1990
Pozo J Powell B Andrews B Hutton P Clarke J

We reviewed 35 patients who had an amputation following the failure of treatment for severe lower limb trauma. Seven of the amputations were for ischaemia, within one month of injury; 13 were between one month and one year for infection complicating loss of wound cover in un-united fractures; and 15 were later than one year after injury, mainly for infected non-union. The latter group of patients had had an average of 12 operations and 50 months of treatment, including eight months in hospital. We used a new limb injury score based on damage to the individual tissue elements; this indicated that, even in the absence of neurovascular injury, the presence of severe damage to skin, bone and muscle, with wound contamination, particularly in the lower tibia, had a poor prognosis. We therefore recommend, to avoid multiple operations, with prolonged hospitalisation and suffering, that these patients should have early independent review by orthopaedic and plastic surgeons with the aim of establishing an accurate prognosis for the salvage of a useful limb.


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 2 | Pages 195 - 198
1 Mar 1988
Crawfurd E Emery R Hansell D Phelan M Andrews B

It has been shown that raised intracapsular pressure causes avascular necrosis of the femoral head in experimental animals, but the relevance of this to clinical fractures of the femoral neck is controversial. We have studied 19 patients with intracapsular fractures of the femoral neck by pressure measurement and by ultrasonography to demonstrate capsular distension. The intra-articular pressure in Garden Grade I and II fractures averaged 66.4 mmHg with a maximum of 145 mmHg. In 10 Garden Grade III and IV fractures the average pressure was 28 mmHg with a maximum of 65 mmHg. Most of the recorded intracapsular pressures were high enough to have caused possible vascular embarrassment, and it is suggested that early decompression of the haemarthrosis should be considered.