This study aimed to assess whether the severity of symptoms (assessed with the Oxford Hip Score (OHS)) can relate to the levels of mRNA expression of markers for muscle inflammation (tumour necrosis factor alpha (TNFα), interleukin 6 (IL-6)) in the proximal vastus lateralis (VL) of patients with severe OA undergoing THR. Following local research ethics approval and informed consent, 17 patients were prospectively recruited. Muscle biopsies were obtained from the proximal VL (accessed through the surgical wound) intraoperatively whilst the OHS questionnaire was administered preoperatively. mRNA expression for TNFα and IL-6 was assessed using the reverse transcriptase polymerase chain reaction (RT-PCR). The median OHS was used for stratification, with patients above the median classed as having moderate symptoms (MS) and those below classed as having severe symptoms (SS). The effect of SS on muscle inflammation was assessed with relative quotient (RQ) comparison of SS vs. MS mRNA expression.Aim
Methods
To assess whether the Oxford Hip Score (OHS), is reflective of objectively assessed functional performance (timed up and go (TUG), 30 sec sit to stand (ST), 6 minute walk test (6MWT), stair climb performance (SCP), and gait speed (GS)) in patients undergoing total hip arthroplasty (THA). 50 patients undergoing THA were prospectively recruited after ethical approval. Demographics and objective physical performance were assessed (TUG, ST, 6MWT, SCP, GS), as was the OHS preoperatively, and at 6 weeks, 6 months and 9 to 12 months postoperatively. Pearson's correlation coefficient was used to assess relationships, with p<0.05 statistically significant.Aim
Methods
To assess the relationship between mRNA expression of genetic markers of inflammation (tumour necrosis factor-alpha (TNFα)) and interleukin-6 (IL-6) in the vastus lateralis (VL) of the operated leg, and the strength of the operated leg quadriceps, in patients following THR. Following ethical approval, 10 patients were recruited prospectively. Distal VL (5cm proximal to lateral supra-patellar pouch) biopsies were obtained intraoperatively and at 6 weeks post-operatively, with maximal voluntary contraction of the operated leg quadriceps (MVCOLQ) in Newtons(N), assessed preoperatively and at 6 weeks post-op. mRNA expression in the biopsies was assessed using the reverse transcriptase polymerase chain reaction (RT-PCR). Relationships were assessed using Spearman's correlation coefficient (data not normally distributed).Aim
Methods
Late (commenced 6 months to 4 years post-op) home-based progressive resistance training programs are proven to improve muscle strength and function after total hip replacement (THR). This study assessed whether early (commenced < 1 week post-op) HBPRT post-THR improves muscle mass, strength and function relative to routine physiotherapy rehabilitation (RPR) at up to 12 months follow up. Prospective single blind randomized controlled study performed after ethical approval. 50 patients randomised to 6 week HBPRT (n=26) or RPR (n=24) postoperatively. Maximal voluntary contraction of the operated leg quadriceps in (MVCOLQ) in Newtons (N), sit to stands in 30 seconds (ST, number of repetitions), and the lean mass in grams of the operated leg (LM) were assessed preoperatively and at intervals up to 12 months postoperatively. Mixed model repeated measures ANOVA was used for statistical analysis.Introduction
Methods
Malalignment of some designs of stem is associated with an increased risk of aseptic loosening and revision. We investigated whether the alignment of the cemented polished, double-taper design adversely affected outcome, in a multicentre prospective study. A multicentre prospective study of 1189 total hip replacements was undertaken to investigate whether there is an association between surgical outcome and femoral stem alignment. All patients underwent a primary THR with the Exeter femoral stem (Stryker Howmedica Osteonics, Mahwah, NJ) and a variety of acetabular components. The primary outcome measure was the Oxford hip score (OHS) and change in OHS at five years. Secondary outcomes included rate of dislocation and revision. Radiographic evaluation of the femoral component was also undertaken. The long axis of the Exeter femoral component and the long axis of the femoral canal were located, and the angle at the point of intersection measured. The cementing quality was determined as defined by Barrack et al. Radiolucent lines at the cement-stem and cement-bone interface in the five year radiographs were defined using the zones described by Gruen et al. Subsidence was measured as the vertical dimension of the radiolucency craniolateral to the shoulder of the stem in Gruen zone 1 as described by Fowler et al. Cement fractures were recorded.Introduction
Methods
Bone marrow derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in adult stem cells. In this study we characterised bone marrow derived stem cells and investigated the effects of hypoxia on gene expression changes and chondrogenesis. Adherent colony forming cells were isolated and cultured from the stromal component of bone marrow. The cells at passage 2 were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions for 14 days. Gene expression analysis, glycosoaminoglycan and DNA assays, and immunohistochemical staining were determined to assess chondrogenesis.INTRODUCTION
MATERIALS AND METHODS
Preoperative psychological distress has been reported to predict poor outcome and patient dissatisfaction after total hip replacement (THR). We investigated this relationship in a prospective multi-centre study between January 1999 and January 2002. We recorded the Oxford Hip Score (OHS) and SF36 score preoperatively and up to five years after surgery and a global satisfaction questionnaire at five year follow up for 1039 patients. We dichotomised the patients into the mentally distressed (Mental Health Scale score - MHS <50) and the not mentally distressed (MHS (50) groups based on their pre-operative MHS of the SF36. 776 (677 not distressed and 99 distressed) out of 1039 patients were followed up at 5 years.Introduction
Methods
Mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. We have previously demonstrated that the infrapatellar synovial fat pad is a rich source of mesenchymal stem cells and these cells are able to undergo chondrogenic differentiation. Although synovial fat pad derived mesenchymal stem cells may represent a heterogenous population, clonal populations derived from the synovial fat pad have not previously been studied. Mesenchymal stem cells were isolated from the infrapatellar synovial fat pad of a patient undergoing total knee arthroplasty and expanded in culture. Six clonal populations were also isolated before initial plating using limiting dilution and expanded. The cells from the mixed parent population and the derived clonal populations were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium for 14 days. Gene expression analyses; glycosoaminoglycan and DNA assays; and immunohistochemical staining were determined to assess chondrogenic responses.Introduction
Materials and Methods
Bone marrow derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in adult stem cells. In this study we characterised bone marrow derived stem cells and investigated the effects of hypoxia on gene expression changes and chondrogenesis. Adherent colony forming cells were isolated and cultured from the stromal component of bone marrow. The cells at passage 2 were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions for 14 days. Gene expression analysis, glycosoaminoglycan and DNA assays, and immunohistochemical staining were determined to assess chondrogenesis.INTRODUCTION
MATERIALS AND METHODS
Mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. We have previously demonstrated that the infrapatellar synovial fat pad is a rich source of mesenchymal stem cells and these cells are able to undergo chondrogenic differentiation. Although synovial fat pad derived mesenchymal stem cells may represent a heterogenous population, clonal populations derived from the synovial fat pad have not previously been studied. Mesenchymal stem cells were isolated from the infrapatellar synovial fat pad of a patient undergoing total knee arthroplasty and expanded in culture. Six clonal populations were also isolated before initial plating using limiting dilution and expanded. The cells from the mixed parent population and the derived clonal populations were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium for 14 days. Gene expression analyses; glycosoaminoglycan and DNA assays; and immunohistochemical staining were determined to assess chondrogenic responses.Introduction
Materials and Methods
Bone marrow derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in adult stem cells. In this study we characterised bone marrow derived stem cells and investigated the effects of hypoxia on gene expression changes and chondrogenesis. Adherent colony forming cells were isolated and cultured from the stromal component of bone marrow. The cells at passage 2 were characterised for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions for 14 days. Gene expression analysis, glycosoaminoglycan and DNA assays, and immunohistochemical staining were determined to assess chondrogenesis. Bone marrow derived adherent colony forming cells stained strongly for markers of adult mesenchymal stem cells including CD44, CD90 and CD105, and they were negative for the haematopoietic cell marker CD34 and for the neural and myogenic cell marker CD56. Interestingly, a high number of cells were also positive for the pericyte marker 3G5. Cell aggregates showed a chondrogenic response and in lowered oxygen there was increased matrix accumulation of proteoglycan, but less cell proliferation, which resulted in 3.2-fold more glycosoaminoglycan per DNA after 14 days of culture. In hypoxia there was increased expression of key transcription factor SOX6, and the expression of collagens II and XI, and aggrecan was also increased. Pericytes are a candidate stem cell in many tissue and our results show that bone marrow derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension, which up-regulated SOX6 and increased the synthesis and assembly of matrix during chondrogenesis. This has important implications for tissue engineering applications of bone marrow derived stem cells.
There is an ever-increasing clinical need for the regeneration and replacement of tissue to replace soft tissue lost due to trauma, disease and cosmetic surgery. A potential alternative to the current treatment modalities is the use of tissue engineering applications using mesenchymal stem cells that have been identified in many tissue including the infrapatellar fat pad. In this study, stem cells isolated from the infrapatellar fat pad were characterised to ascertain their origin, and allowed to undergo adipogenic differentiation to confirm multilineage differentiation potential. The infrapatellar fat pad was obtained from total knee replacement for osteoarthritis. Cells were isolated and expanded in monolayer culture. Cells at passage 2 stained strongly for CD13, CD29, CD44, CD90 and CD105 (mesenchymal stem cell markers). The cells stained poorly for LNGFR and STRO1 (markers for freshly isolated bone marrow derived stem cells), and sparsely for 3G5 (pericyte marker). Staining for CD34 (haematopoetic marker) and CD56 (neural and myogenic lineage marker) was negative. {BR}For adipogenic differentiation, cells were cultured in adipogenic inducing medium consisting of basic medium with 10ug/ml insulin, 1uM dexamthasone, 100uM indomethacin and 500uM 3-isobutyl-1-methyl xanthine. By day 16, many cells had lipid vacuoles occupying most of the cytoplasm. On gene expression analyses, the cells cultured under adipogenic conditions had almost a 1,000 fold increase in expression of peroxisome proliferator-activated receptor gamma-2 (PPAR gamma-2) and 1,000,000 fold increase in expression of lipoprotein lipase (LPL). Oil red O staining confirmed the adipogenic nature of the observed vacuoles and showed failure of staining in control cells. Our results show that the human infrapatellar fat pad is a viable potential autogeneic source for mesenchymal stem cells capable of adipogenic differentiation as well as previously documented ostegenic and chondrogenic differentiation. This cell source has potential use in tissue engineering applications.
Hypoxia has been shown to improve chondrogenesis in stem cells derived from the bone marrow. We explore the hypothesis that this effect would also apply to stem cells derived from the infrapatellar fat pad.
Measurement of the rate of fracture healing is a major problem in fracture research. Bone mineral density (BMD) of fracture callus has been used as a measure of healing in diaphyseal fractures. However, metaphyseal fractures (especially in the elderly) are now the commonest type of fracture and are a significant public health problem. This study investigated whether measurement of BMD at the fracture site in the distal radius can be used as a measure of fracture healing. We recruited 28 patients who had sustained a dorsally displaced distal radial fracture which was deemed to require treatment by intrafocal wire fixation. All patients had acceptable correction of dorsal and radial angle at final x ray (3 months). Wrist function was measured using the Patient Rated Wrist Evaluation (PRWE – a validated outcome measure for use after distal radial fractures), grip strength,and range of motion. All measurements were made at 6, 12 and 26 weeks. BMD was measured at the fracture site (examining the BMD of the medullary bone at the fracture site after removal of wires), in the opposite wrist and the lumbar spine using QCT at 6 weeks after fracture. There was no correlation between fracture site BMD and BMD at the other wrist or the lumbar spine (r <
0.3). The BMD at the fracture site was higher than the BMD at the other wrist (mean 168 vs 70 HU; p<
0.001 paired T test). There was no relationship between fracture site BMD or the ratio of BMDs fracture site / normal wrist, and any of the functional assessments (proportion grip strength recovered, range of motion or PRWE (r <
0.3)). 15 of these patients underwent a second QCT at 12 weeks after fracture. There was no significant change in fracture site BMD between the first and second scan. These data indicate that fracture site BMD is unlikely to be a useful method of measuring metaphyseal bone healing. The increase in BMD at the fracture site was unexpected; possible explanations include impaction of bone or high BMD in woven bone (the relationship of which to bone stiffness is uncertain).