Surgeons treating fractures with many small osteochondral fragments have often expressed the clinical need for an adhesive to join such fragments, as an adjunct to standard implants. If an adhesive would maintain alignment of the articular surfaces and subsequently heal it could result in improved clinical outcomes. However, there are no bone adhesives available for clinical indications and few pre-clinical models to assess safety and efficacy of adhesive biomaterial candidates. A bone adhesive candidate based on water, α-TCP and an amino acid phosphoserine was evaluated in-vivo in a novel murine bone core model (preliminary results presented EORS 2019) in which excised bone cores were glued back in place and harvested @ 0, 3, 7, 14, 28 and 42days. Adhesive pull-out strength was demonstrated 0–28 days, with a dip at 14 days increasing to 11.3N maximum. Histology 0–42 days showed the adhesive progressively remodelling to bone in both cancellous and cortical compartments with no signs of either undesirable inflammation or peripheral ectopic bone formation. These favourable results suggested translation to a large animal model. A porcine dental extraction socket model was subsequently developed where dental implants were affixed only with the adhesive. Biomechanical data was collected @ 1, 14, 28 and 56 days, and histology at 1,14,28 and 56 days. Adhesive strength assessed by implant pull-out force increased out to 28 days and maintained out to 56 days (282N maximum) with failure only occurring at the adhesive bone interface. Histology confirmed the adhesive's biocompatibility and osteoconductive behavior. Additionally, remodelling was demonstrated at the adhesive-bone interface with resorption by osteoclast-like cells and followed by new bone apposition and substitution by bone. Whilst the in-vivo dental implant data is encouraging, a large animal preclinical model is needed (under development) to confirm the adhesive is capable of healing, for example, loaded osteochondral bone fragments.
Four uncemented Symax hip stems were extracted at three weeks and nine, 13 and 32 months, respectively, for reasons other than loosening. The reasons for implant removal were infection in two cases, recurrent dislocation in one and acetabular fracture in one. They were analysed to assess the effect and behaviour of an electrochemically deposited, completely resorbable biomimetic BONIT-hydroxyapatite (HA) coating (proximal part) and a DOTIZE surface treatment (distal part) using qualitative histology, quantitative histomorphometry and scanning electron microscopy (SEM). Early and direct bone-implant bonding with signs of active remodelling of bone and the HA coating were demonstrated by histology and SEM. No loose BONIT-HA particles or delamination of the coating were observed, and there was no inflammation or fibrous interposition at the interface. Histomorphometry showed bone-implant contact varying between 26.5% at three weeks and 83.5% at 13 months at the HA-coated implant surface. The bone density in the area of investigation was between 24.6% at three weeks and 41.1% at 32 months. The DOTIZE surface treatment of the distal part of the stem completely prevented tissue and bone apposition in all cases, thereby optimising proximal stress transfer. The overall features of this implant, in terms of geometry and surface texture, suggest a mechanically stable design with a highly active biomimetic coating, resulting in rapid and extensive osseo-integration, exclusively in the metaphyseal part of the stem. Early remodelling of the HA coating does not seem to have a detrimental effect on short-term bone-implant coupling. There were no adverse effects identified from either the BONIT-HA coating or the DOTIZE surface treatment.
Between 1969 and 1989, we performed posterior segmental instrumentation on 38 patients with thoracic Scheuermann's kyphosis. We used a dynamic system without sublaminar fixation, and a kyphosis of 50 degrees was the main indication for surgery. The mean initial angle was 68 degrees (50 to 100) and the mean final kyphosis was 43 degrees at five-year follow-up, with a mean final loss after surgery of 3.7 degrees. Reconstruction of the vertebral bodies, vertebral wedging and the anterior-body height ratio were observed even in skeletally mature patients. There were no medical complications. There were three cases of loss of correction by more than 10 degrees and one of rod fracture with pseudarthrosis. The role of non-operative treatment is evaluated and early surgical treatment is advocated.
This report describes a technique for the correction and fusion of scoliosis with the aid of a flexible metal rod that is fixed by wires under tension to the bases of the spinous processes on the convex side of the curve at a number of points. The results in a series of 100 cases are reported. In the last seventy patients, the average correction at one month was 51 per cent, and after two years 45 per cent. In these seventy cases the incidence of pseudarthrosis was 5-7 per cent.