Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 36 - 36
1 Feb 2020
Aframian A Auvinet E Iranpour F Barker T Barrett D
Full Access

Introduction

Gait analysis systems have enjoyed increasing usage and have been validated to provide highly accurate assessments for range of motion. Size, cost, need for marker placement and need for complex data processing have remained limiting factors in uptake outside of what remains predominantly large research institutions. Progress and advances in deep neural networks, trained on millions of clinically labelled datasets, have allowed the development of a computer vision system which enables assessment using a handheld smartphone with no markers and accurate range of motion for knee during flexion and extension. This allows clinicians and therapists to objectively track progress without the need for complex and expensive equipment or time-consuming analysis, which was concluded to be lacking during a recent systematic review of existing applications.

Method

A smartphone based computer vision system was assessed for accuracy with a gold standard comparison using a validated ‘traditional’ infra-red motion capture system which had a defined calibrated accuracy of 0.1degrees. A total of 22 subjects were assessed simultaneously using both the computer vision smartphone application and the standard motion capture system. Assessment of the handheld system was made by comparison to the motion capture system for knee flexion and extension angles through a range of motion with a simulated fixed-flexion deformity which prevented full extension to assess the accuracy of the system, repeating movements ten times. The peak extension angles and also numerous discrete angle measurements were compared between the two systems. Repeatability was assessed by comparing several sequential cycles of flexion/extension and comparison of the maximum range of motion in normal knees and in those with a simulated fixed-flexion deformity. In addition, discrete angles were also measured on both legs of three cadavers with both skin and then bone implanted fiducial markers for ground truth reliability accounting for skin movement. Data was processed quickly through an automated secure cloud system.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 52 - 52
1 Mar 2017
Navruzov T Riviere C Van Der Straeten C Harris S Aframian A Iranpour F Cobb J Auvinet E
Full Access

Background

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise.

Aim

Create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND

Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona® implant (Zimmer, Warsaw, USA) is kinematically aligned.

METHODS

A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona® prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona® implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 11 - 11
1 Feb 2017
Harris S Dhaif F Iranpour F Aframian A Auvinet E Cobb J Howell S Riviere C
Full Access

BACKGROUND

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1].

Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment.

METHODS

The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects.

Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments - (fig.1). Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 5 - 5
1 May 2015
Ricks M Langdown A Aframian A
Full Access

We have looked at a single surgeons results for hip abductor repair in a population of patients and assessed them pre and post operatively.

We collected data over a 2 year period and each patient underwent a telephone consultation and were scored both pre operatively and post operatively using the non-arthritic hip score (NAHS) and UCLA activity score (UCLA).

A total of 15 patients were included in the study over a 2 year period. 93% underwent some form of investigation prior to surgery. Intra-operatively all patients were found to have pathological abductors. 9 patients were found to have partial avulsions of the abductors and the other 6 had under surface tears or detachments. The mean preoperative NAHS was 35.7/80 and >3/12 post operatively was 68.8/80 (p value <0.001). The mean preoperative UCLA score was 3.1/10 and >3/12 post operatively was 6.6/10 (p value <0.001).

There is a statistically significant improvement in the NAHS of these patients as early as 3/12 and therefore early exploration is advised by the team. Surgical exploration is advised if the patient remains symptomatic despite having negative imaging results as this condition continues to go untreated despite the patients having a significant improvement post operatively.