Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 11 - 11
14 Nov 2024
Maia J Bilo M Silva AS Sobreiro-Almeida R Mano J
Full Access

Introduction

Ink engineering can advance 3D-printability for better therapeutics, with optimized proprieties. Herein, we describe a methodology for yielding 3D-printable nanocomposite inks (NC) using low-viscous matrices, via the interaction between the organic and inorganic phases by chemical coupling.

Method

Natural photocurable matrices were synthesized: a protein – bovine serum albumin methacrylate (BSAMA), and a polysaccharide – hyaluronic acid methacrylate (HAMA). Bioglass nanoparticles (BGNP) were synthesized and functionalized via aminosilane chemistry. The functionalization of BSAMA, HAMA, and BGNP were quantified via NMR. To arise extrudable inks, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry was used to link innate carboxylic groups of BSAMA/HAMA and amine-functionalized BGNP. Different crosslinker and BGNP amounts were tested. Visible light photopolymerization is performed, using lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The NC's rheological, mechanical, and biological behavior was evaluated before 3D extrusion printability.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 8 - 8
1 Dec 2021
Khojaly R Rowan F Nagle M Shahab M Ahmed AS Taylor C Cleary M Mac Niocaill R
Full Access

Abstract

Objectives

The purpose of this trial is to investigate the safety and efficacy of immediate weight-bearing (IWB) and range of motion exercise regimes following ORIF of unstable ankle fractures with a particular focus on functional outcomes and complication rates.

Methods

A pragmatic randomised controlled multicentre trial, comparing IWB in a walking boot and ROM within 24 hours versus NWB and immobilisation in a cast for six weeks, following ORIF of all types of unstable adult ankle fractures. The exclusion criteria are skeletal immaturity and tibial plafond fractures. The primary outcome measure is the functional Olerud-Molander Ankle Score (OMAS). Secondary outcomes include wound infection, displacement of osteosynthesis, the full arc of ankle motion, RAND-36 Item Short Form Survey (SF-36) scoring, time to return to work and postoperative hospital length of stay.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 152 - 152
1 Nov 2021
Selim A Seoudi N Algeady I Barakat AS
Full Access

Introduction and Objective

Hip fractures represent one of the most challenging injuries in orthopaedic practice due to the associated morbidity, mortality and the financial burden they impose on the health care systems. By many still considered as the gold standard in the management of intertrochanteric fractures, the Dynamic Hip Screw utilizes controlled collapse during weight bearing to stabilize the fracture. Despite being a highly successful device, mechanical failure rate is not uncommon. The most accepted intraoperative indicator for lag screw failure is the tip apex distance (TAD), yet lateral femoral wall thickness (LWT) is another evolving parameter for detecting the potential for lateral wall fracture with subsequent medialization and implant failure. The aim of this study is to determine the mean and cut off levels for LWT that warrant lateral wall fracture and the implications of that on implant failure, revision rates and implant choice.

Materials and Methods

This prospective cohort study included 42 patients with a mean age of 70.43y with intertrochanteric hip fractures treated with DHS fixation by the same consultant surgeon from April 2019 to December 2019. The study sample was calculated based on a confidence level of 90% and margin of error of 5%. Fracture types included in the study are 31A1 and 31A2 based on the AO/OTA classification system. LWT was assessed in all patients preoperatively using Surgimap (Nemaris, NY, USA) software. Patients were divided into two groups according to the post-operative integrity of the lateral femoral wall, where group (A) sustained a lateral femoral wall fracture intraoperatively or within 12 months after the index procedure, while in group (B) the lateral femoral wall remained intact. All patients were regularly followed up radiologically and clinically per the Harris Hip Score (HHS) for a period of 12 months.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 8 - 8
1 Nov 2021
Khojaly R Rowan FE Nagle M Shahab M Ahmed AS Dollard M Taylor C Cleary M Niocaill RM
Full Access

Introduction and Objective

Ankle fractures are common and affect young adults as well as the elderly. An unstable ankle fracture treatment typically involves surgical fixation, immobilisation, and modified weight-bearing for six weeks. Non-weight bearing (NWB) cast immobilisation periods were used to protect the soft tissue envelope and osteosynthesis. This can have implications on patient function and may reduce independence, mobility and return to work. Newer trends in earlier mobilisation compete with traditional NWB doctrine, and weak consensus exists as to the best postoperative strategy. The purpose of this trial is to investigate the safety and efficacy of immediate weight-bearing (IWB) and range of motion (ROM) exercise regimes following ORIF of unstable ankle fractures with a particular focus on functional outcomes and complication rates.

Materials and Methods

A pragmatic randomised controlled multicentre trial, comparing IWB in a walking boot and ROM within 24 hours versus non-weight-bearing (NWB) and immobilisation in a cast for six weeks, following ORIF of all types of unstable adult ankle fractures (lateral malleolar, bimalleolar, trimalleolar with or without syndesmotic injury). The exclusion criteria are skeletal immaturity and tibial plafond fractures. The primary outcome measure is the functional Olerud-Molander Ankle Score (OMAS). Secondary outcomes include wound infection (deep and superficial), displacement of osteosynthesis, the full arc of ankle motion (plantar flexion and dorsal flection), RAND-36 Item Short Form Survey (SF-36) scoring, time to return to work and postoperative hospital length of stay.


Abstract

Objectives

To determine the effects of self-management interventions (SMIs) including an exercise component (EC) on low back pain (LBP) and disability and to determine whether SMIs with tailored exercises (TEs) have superior outcomes compared to SMIs with general exercises (GEs).

Methods

An electronic systematic search of randomized controlled trials (RCTs) was performed in 5 electronic databases. RCTs compared SMIs with an EC to control interventions. Data were extracted at 3 follow-up points (short-term, intermediate and long-term) and meta-analyses were performed. Reviewed RCTs were divided into subgroups based on whether the EC was tailored or generic. A subgroup meta-analysis was performed at the short-term follow-up to assess whether the SMIs with TEs have superior outcomes compared to SMIs with GEs.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 129 - 129
1 Nov 2018
Sá MJC Segundo FAS Freitas VML Azevedo AS Silva ACF de Lima GG Devine DM
Full Access

The aim of this study was to evaluate the trochlear bone and cartilaginous regeneration of rabbits using a composite based on platelet rich plasma (PRP), chitosan and hydroxyapatite. The study was approved by the ethics committee of the Federal University of Campina Grande under number 72/2017. Surgical holes measuring four millimetres in diameter were performed in rabbit trochleae, one surgical hole in each animal remained empty and another one was filled with the composite. Clinical-orthopaedic and radiographic evaluations were carried out for 60 days, after which the animals were euthanized for histomorphometric evaluations. Clinical-evaluations exhibited lameness of two members of the treatment (T) group and one member of control (C) group. The radiographic evaluation of T group exhibited absence of subchondral bone reaction (33%); nonetheless, presence of moderate subchondral bone reaction was more frequently reported in group C with 67%. Microscopic evaluation revealed the presence of tissue neoformation, composed of dense connective tissue. Microscopic findings were similar in both groups, with a difference in the amount of neoformed tissue, which was confirmed after the morphometric analysis, revealing a significant difference in the quantity of newly formed tissue at the bone / cartilage / implant interface in the T group. The results indicate that the composite based on chitosan, hydroxyapatite and PRP enhanced bone and cartilage healing.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 94 - 94
1 Nov 2018
Weiss AS
Full Access

Robust repair relies on blood flow. This vascularization is the major challenge faced by tissue engineering on the path to forming thick, implantable constructs. Without this vasculature, oxygen and nutrients cannot reach the cells located far from host blood vessels. To make viable constructs, tissue engineering takes advantage of the mechanical properties of synthetic materials, while combining them with extracellular matrix proteins to create a natural environment for the tissue- specific cells. Tropoelastin, the precursor of the elastin, is the extracellular matrix protein responsible for elasticity in diverse tissues, including robust blood vessels. We find that tropoelastin contributes a physical role in elasticity and also substantially to the biology of repairing tissue. The emerging model from a range of our in vivo studies is that tropoelastin encodes direct biological effects and has the versatility to promote repair. We have discovered that tropoelastin substantially improves healing by halving the time to repair bone in small animals and large animal preclinical models; tropoelastin elicits this response with early stage neo-angiogenesis, recruitment of endogenous cells with consistently accelerated repair. This potency is marked by the concerted appearance of blood vessels, tissue and phased cellular contributions that work together to accelerate repair.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 90 - 97
1 Feb 2017
Rajfer RA Kilic A Neviaser AS Schulte LM Hlaing SM Landeros J Ferrini MG Ebramzadeh E Park S

Objectives

We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days.

Materials and Methods

Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 77 - 77
1 Jan 2017
Veronesi F Giavaresi G Maglio M d'Abusco AS Politi L Scandurra R Borzì R Grigolo B Desando G Olivotto E Fini M
Full Access

Osteoarthritis (OA), the most common chronic degenerative joint disease, is characterized by inflammation, degradation of the articular cartilage and subchondral bone lesions, causing pain and decreased functionality.

NF-κB pathway is involved in OA and, in most cases, its activation depends on the phosphorylation and degradation of IκBα, the NF-κB endogenous inhibitor that sequesters NF-κB in the cytosol. Under inflammatory stimuli, IκBα is degraded by the IKK signalosome and NF-κB moves into the nucleus, inducing the transcription of inflammatory mediator genes and catabolic enzymes. The IKK signalosome includes IKKβ and IKKα kinases, the latter shown to be pivotal in the OA extracellular matrix derangement. The current OA therapies are not curative and nowadays, the preclinical research is evaluating new structure-modifying pharmacological treatments, able to prevent or delay cartilage degradation.

N-acetyl phenylalanine derivative (NAPA), is a derivative of glucosamine, a constituent of the glycosaminoglycans of cartilage and a chondroprotective agent. Previous in vitro studies showed the ability of NAPA to increase cartilage components and to reduce inflammatory cytokines, inhibiting IKKα kinase activity and its nuclear migration.

The present study aims to further clarify the effect of NAPA in counteracting OA progression, in an in vivo mouse model after destabilization of the medial meniscus (DMM).

Mice were divided into 3 groups:

DMM group: DMM surgery without NAPA;

DMM+NAPA group: DMM surgery with NAPA treatment;

NO DMM group: no DMM surgery.

DMM surgery was performed in the right knee, according to Glasson SS [2], while the left knee did not undergo any surgery. Four weeks after surgery (mild-to-moderate OA), some animals received one intra-articular injection of NAPA (2.5 mM) and after 2 weeks, the animals were pharmacologically euthanized. The mice of the 1st group were euthanized 4 weeks after DMM and those of the 3rd group after 6 weeks from their arrival in the animal facility. At the end of experimental times, both knee joints of the animals were analyzed through histology, histomorphometry, immunohistochemistry and subchondral bone microhardness.

The injection of NAPA significantly improved cartilage structure, increased cartilage thickness (p<0.0005), reduced Chambers and Mankin scores (p<0.005), fibrillation index (p<0.005) and decreased MMP13 (p<0.05) and ADAMTS5, MMP10, and IKKα (p<0.0005) staining. The microhardness measurements did not shown statistically significant differences between groups.

This study demonstrated the chondroprotective activities exerted by NAPA in vivo. NAPA markedly improved the physical structure of articular cartilage and reduced the amount of catabolic enzymes, and therefore of extracellular matrix remodeling. The reduction in OA grading and catabolic enzymes paralleled the reduction of IKKα expression. This further hints at a pivotal role of IKKα in OA development by regulating MMP activity through the control of procollagenase (MMP10) expression. We believe that the preliminary preclinical data, here presented, contribute to improve the knowledge on the development of disease modifying drugs since we showed the ability of NAPA of reverting the surgically induced OA in the widely accepted DMM model.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 49 - 49
1 Oct 2016
Kerai AS Coathup M Osagie L Samizadeh S Blunn G
Full Access

There is increasing interest in using anabolic factors such as stem cells to augment fragility fracture repair. One of the factors associated with fracture healing is the retention and migration of stem cells to the site of injury (1–3). The aim of this study was to isolate stem cells from osteopenic rats and investigate and compare the CD marker expression, proliferation, migration, osteogenic and adipogenic differentiation. The hypothesis of this study is that the migration of MSCs from young, adult and ovariectomised (OVX) rats will have different proliferation, differentiation and migratory abilities.

CD marker expression of MSCs from young, adult and osteopenic rats was measured using flow cytometry. Proliferation, osteogenic differentiation and adipogenic differentiation was measured using Alamar Blue, ALP expression and Alizari n Red and quantitative Oil red O respectively. Cells were incubated in Boyden chambers to quantify their migration towards SDF1. Data was analysed using a Student t-test where p values < 0.05 were considered significant.

MSCs from all 3 groups of rats had similar proliferation and expression of CD29(>90%), CD90(>96%), CD34(<5%) and CD45(approx 10%). The proliferation rate was also similar. However, interestingly the migration and differentiation ability was significantly different between the MSCs from the 3 groups of rats. The young MSCs were not only better at differentiating into bone and fat, but they also migrated significantly more towards SDF1. MSCs from OVX rats are similar to MSCs from young rats. However when induced to turn into bone, fat and migrate towards SDF1, young MSCs are significantly more responsive than MSCs from OVX and adult control rats. The poor homing ability and differentiation of the stem cells and their retention may result in a reduction in bone formation leading to delayed union in fractures of osteoporotic patients(4).


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 960 - 966
1 Jul 2006
Pluhar GE Turner AS Pierce AR Toth CA Wheeler DL

Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p > 0.05), yet material properties were inferior (p < 0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1056 - 1062
1 Sep 2001
Bono CM Renard R Levine RG Levy AS

Using a dynamic biomechanical model of malunion of the shoulder, we have determined the change in deltoid force required for abduction with various combinations of superior and posterior displacement of fractures of the greater tuberosity of the humerus. We tested eight fresh human cadaver shoulders in a dynamic shoulder-testing apparatus during cycles of glenohumeral abduction from 0° to 90°. The greater tuberosities were osteotomised and stabilised to represent malunion with combinations of superior and posterior displacements of 1 cm and less. The peak force was measured for each displacement in each specimen and statistically compared with values of no displacement using a repeated-measures analysis of variance.

The abduction force was significantly increased by 16% (p = 0.006) and 27% (p = 0.0001) by superior displacements of 0.5 cm and 1 cm, respectively, while combined superior and posterior displacement of 1 cm gave an increase in force of 29% (p = 0.001). While treatment criteria for acceptable residual displacement of the greater tuberosity are widely used, there is little information on the direct biomechanical effects of displacement on shoulder mechanics. Although the results of conservative treatment are influenced by a number of factors, including associated injuries, rehabilitation and the pre-existing function of the shoulder, our data suggest that small amounts of residual displacement may alter the balance of forces required to elevate the arm at the glenohumeral joint.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 118 - 124
1 Jan 1999
Brewster NT Gillespie WJ Howie CR Madabhushi SPG Usmani AS Fairbairn DR

In impaction grafting of contained bone defects after revision joint arthroplasty the graft behaves as a friable aggregate and its resistance to complex forces depends on grading, normal load and compaction. Bone mills in current use produce a distribution of particle sizes more uniform than is desirable for maximising resistance to shear stresses.

We have performed experiments in vitro using morsellised allograft bone from the femoral head which have shown that its mechanical properties improve with increasing normal load and with increasing shear strains (strain hardening). The mechanical strength also increases with increasing compaction energy, and with the addition of bioglass particles to make good the deficiency in small and very small fragments. Donor femoral heads may be milled while frozen without affecting the profile of the particle size. Osteoporotic femoral heads provide a similar grading of sizes, although fewer particles are obtained from each specimen. Our findings have implications for current practice and for the future development of materials and techniques.