Introduction. Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized
Introduction. Detailed analysis of retrieved total hip replacements (THRs) is valuable for assessing implant and material successes and failures. Reduction of bearing wear and corrosion and fretting of the head-neck trunnion is essential to implant durability and patient health. This research quantifies and characterizes taper and bearing surface damage on retrieved oxidized
Introduction. The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized
While Oxidized
Introduction. Metal ion and particle release, particularly cobalt, has become an important subject in total hip arthroplasty, as it has shown to induce metal hypersensitivity, adverse local tissue reactions and systemic ion related diseases. The purpose of the following study was compare the ion release barrier function of a
INTRODUCTION. The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized
Introduction. In Total Hip Arthroplasty (THA), polyethylene wear reduction is key to implant longevity. Oxidized
The aim of this study was to compare the outcome of cemented TKR using either oxidized
ZrN-multilayer coating is clinically well established in total knee arthroplasty [1-3] and has demonstrated significant reduction in polyethylene wear and metal ion release [4,5]. The goal of our study was to analyze the biotribological behaviour of the ZrN-multilayer coating on a polished cobalt-chromium cemented hip stem. CoCr28Mo6 alloy hip stems with ZrN-multilayer coating (CoreHip®AS) were tested versus an un-coated version. In a worst-case-scenario the stems with ceramic heads have been tested in bovine serum in a severe cement interface debonding condition under a cyclic load of 3,875 N for 15 million cycles. After 1, 3, 5, 10 & 15 million cycles the surface texture was analysed by scanning-electron-microscopy (SEM) and energy-dispersive x-ray (EDX). Metal ion concentration of Co,Cr,Mo was measured by inductively coupled plasma mass spectroscopy (ICP-MS) after each test interval. Based on SEM/EDX analysis, it has been demonstrated that the ZrN-multilayer coating keeps his integrity over 15 million cycles of severe stem cemented interface debonding without any exposure of the CoCr28Mo6 substrate. The ZrN-multilayer coated polished cobalt-chromium cemented hip stem has shown a reduction of Co & Cr metal ion release by two orders of a magnitude, even under severe stem debonding and high interface micro-motion conditions. ZrN-multilayer coating on polished cobalt-chromium cemented hip stems might be a suitable option for further minimisation of Co & Cr metal ion release in total hip arthroplasty. Clinical evidence has to be proven during the next years.
Femoral components with an oxidized zirconium-niobium (OxZr) gradient ceramic surface (Oxinium, Smith & Nephew, Memphis, TN) were introduced as an alternative to cobalt-chromium (CoCr) alloy femoral components for the purpose of PE wear reduction in total knee replacements [1]. In the present study, the surface damage and clinical performance of both CoCr alloy and OxZr femoral components were investigated. By matching CoCr alloy and OxZr femoral components for clinical factors, as done by Heyse et al. [2], the surface damage on retrieved CoCr alloy and OxZr femoral component was assessed. Twenty-six retrieved cobalt-chromium (CoCr) alloy femoral components were matched with twenty-six retrieved oxidized
Large diameter femoral heads offer increased range of motion and reduced risk of dislocation. However, their use in total hip arthroplasty has historically been limited by their correlation with increased polyethylene wear. The improved wear resistance of highly crosslinked UHWMPE has led a number of clinicians to transition from implanting traditionally popular sizes (28mm and 32 mm) to implanting 36 mm heads. Desire to further increase stability and range of motion has spurred interest in even larger sizes (> 36 mm). While the long-term clinical ramifications are unknown, in-vivo measurements of highly crosslinked UHMWPE liners indicate increases in head diameter are associated with increased volumetric wear [1]. The goal of this study was to determine if this increase in wear could be negated by using femoral heads with a ceramic surface, such as oxidized Zr-2.5Nb (OxZr), rather than CoCrMo (CoCr). Specifically, wear of 10 Mrad crosslinked UHMWPE (XLPE) against 36 mm CoCr and 44 mm OxZr heads was compared. Ram-extruded GUR 1050 UHMWPE was crosslinked by gamma irradiation to 10 Mrad, remelted, and machined into acetabular liners. Liners were sterilized using vaporized hydrogen peroxide and tested against either 36 mm CoCr or 44 mm OxZr (OXINIUM(tm)) heads (n=3). All implants were manufactured by Smith & Nephew (Memphis, TN). Testing was conducted on a hip simulator (AMTI, Watertown, MA) as previously described [2]. The 4000N peak load (4 time body weight for a 102 kg/225 lb patient) and 1.15 Hz frequency used are based upon data obtained from an instrumented implant during fast walking/jogging and have previously been shown to generate measurable XLPE wear [2,3]. Lubricant was a serum (Alpha Calf Fraction, HyClone Laboratories, Logan, UT) solution that was replaced once per week [2]. Liners were weighed at least once every million cycles (Mcycle) over the duration of testing (∼ 5 Mcycle). Loaded soak controls were used to correct for fluid absorption. Single factor ANOVA was used to compare groups (a = 0.05).Introduction
Materials and Methods
A multitude of different bearing combinations exist to recreate the artificial hip joint. To date, there is no particular ‘gold-standard’ total hip arthroplasty (THA) couple since none is faultless. Strategies to improve performance are aimed either at modifying the shape and design of components or their material properties. Wear particle generation is now well recognised as a cause of aseptic loosening which consistently features amongst the most common indication for revision THA and thus minimising wear lies at the cornerstone of developing bearing couples. However, history has shown the use of supposed newer and improved materials have not been without occasional catastrophic failure. Hard-on-hard bearings are theoretically more resistant to wear but component fracture and squeaking has been witnessed with ceramic-on-ceramic articulations whilst metal-on-metal articulations have been plagued by reports of pseudotumor and ALVAL formation. This has all led to resurgence in the hard-on-soft couple. More recently, corrosion at taper junctions has been identified as a significant factor in hip arthroplasty failure. Femoral head materials, surface changes or coatings may therefore have an increasing role to play. In 2005, a multi-center, prospective, assessor and patient-blinded, randomised control trial was initiated. This was designed as a three armed study with either cobalt-chrome or oxidized
Key Points:. Historically, 22.25, 26, 28, or 32 mm metal femoral heads were used in primary total hip arthroplasty, but innovations in materials now permit head sizes 36 mm or larger. Stability and wear of primary total hip arthroplasty are related to the diameter and material of the femoral head. Larger diameter femoral heads are associated with increased joint stability through increases in arc range of motion and excursion distance prior to dislocation. Fixation of the acetabular component may be related to the size of the femoral head, with increased frictional torque associated with large diameter heads and certain polyethylene. Linear wear of highly crosslinked polyethylenes seems unrelated to femoral head diameter, but larger heads have been reported to have higher volumetric wear. Mechanically assisted crevice corrosion at the connection between the modular femoral head and neck may be associated with the femoral head size and material. Cobalt chromium alloy, alumina ceramic composite, or oxidised
Total Knee Arthroplasty has proven to be a successful procedure for improving pain and function. Long-term studies have shown survivorship to be 90% or greater at 20 years. Most patients in those studies were over 60 years old. There has been a large increase in patients under 60 years old who are undergoing knee arthroplasty. Younger patients have much greater demands on the artificial articular surfaces. The average 55 year old is likely to perform two to three time as many gait cycles as the average 65 or 70 year old. Long-term studies demonstrate that polyethylene wear is a major cause of long-term failure. Newer bearing materials such as cross-linked polyethylenes show promise in reducing wear in THA and more recently in TKA. Femoral component material can significantly influence wear. Studies reveal that in vivo femoral component scratching significantly increases polyethylene wear. Oxidised
Wear of the polyethylene (PE) insert in total knee replacements can lead to wear-particle and fluid-pressure induced osteolysis. One major factor affecting the wear behaviour of the PE insert in-vivo is the surface characteristics of the articulating femoral components. Contemporary femoral components available in Canada are either made of cast Cobalt Chromium (CoCr) alloy or have an oxidized
Total Knee Arthroplasty (TKA) patients may present with effusion, pain, stiffness and functional impairment. A positive metal hypersensitivity (positive LTT) may be an indication for a revision surgery with a custom-made implant devoid of any hypersensitivity-related metal or an implant with the least possible ion content of the metal hypersensitivity, if no custom-made is available. The purpose of the current study is to assess the prevalence of metal hypersensitivity in subjects requiring a primary TKA and assess their early functional outcomes. We are recruiting 660 subjects admitted for TKA. Subjects are randomly assigned to 2 groups: oxidized
Introduction. Infection following total joint arthroplasty is a major and devastating complication. After removal of the initial prosthesis, an antibiotic-impregnated cement spacer is inserted for approx. three months. Treatment is completed by a second stage revision arthroplasty. Up to now, spacers are produced from conventional bone cements that contain abrasive radio-opaque substances like
The purpose of this investigation is to assess the rate of wear the effect once the “bedding in period”/ poly creep had been eliminated. Creep is the visco-elastic deformation that polyethylene exhibits in the first 6–12 weeks. We also assessed the wear pattern of four different bearing couples in total hip arthroplasty (THA): cobalt-chrome (CoCr) versus oxidized
Total joint arthroplasty is a safe and effective procedure as an end-stage treatment for arthritis. In the case of hip replacement mean patient age has decreased from sixty-eight to sixty-five years over the past eight years, raising concerns over implant longevity and the complications that occur in association with revision surgery. The dominant mode of failure of total joint replacements is aseptic loosening, which in many cases is caused by the reaction of bone to the presence of implant debris. In an attempt to increase implant longevity, bearing surfaces that minimize the volume of debris generated from the articular surface are being developed. Ultra- high molecular weight polyethylene, which has been the mainstay of arthroplasty, changing the material with which the polyethylene articulates has also been addressed in an effort to further improve wear characteristics. Oxinium is the brand family name of a material used for replacement joints manufactured by the reconstructive orthopedic surgery division of medical devices company Smith & nephew. It consists of a
Introduction:. Cemented femoral components have been used in hip replacement surgery since its inception. For many patients this works well, but recent retrieval studies. 1–4. and more fundamental studies. 5, 6. have highlighted the issues of damage and material loss from the both matt and polished cemented stems. Materials and methods:. This study will focus on a cohort of retrievals from the Southampton Orthopaedics Centre for Arthroplasty Retrieval Surgery (SOCARS). The cohort consisted of a number of hybrid modular total hip replacements with cemented femoral components, both from mixed and matched manufacturer stem and head combinations. Femoral stems were polished, collarless, tapered designs; head sizes ranged from 28–54 mm. For each femoral stem, samples of Palacos R + G cement (Heraeus Medical GmbH, Hanau, Germany) were retrieved from the proximal region of the cement mantle (Gruen zones 1 and 7), corresponding to both macroscopically damaged and undamaged surfaces of the stem. The areas of damage were determined using calibrated digital photography; damaged surfaces were then imaged in detail using an Alicona InfiniteFocus microscope (Alicona Imaging GmbH, Graz, Austria). The technique uses optical microscopy and focus variation technology to extract 3D morphology and depth information from the surface with a resolution of 10 nm. A series of measurements were made and two different analysis routes were used to provide volumetric material loss measurements from the stem surface. High-resolution microscopy and elemental analysis of the cement and stem surfaces was conducted via SEM and EDX to identify the mechanisms leading to material loss at the cement-stem interface. Results:. The results demonstrate that material loss from polished femoral stems results from a progressive tribocorrosion process; the major damage mechanism is thought to be the micro-motion between the femoral stem surface and