Aims. Oxidized
Aims. This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized
Abstract. Background. Oxidized
We investigated the wear characteristics and clinical performance of four different total hip joint articulations in 114 patients. Wear and migration was measured by roentgenstereophotogrammetric analysis at five years or at the last follow-up. The mean annual wear was 0.11 mm for a stainless steel/Enduron articulation, 0.34 mm for stainless steel/Hylamer cup, 0.17 mm for
Introduction: Long term performance of total knee replacements is governed by wear of ultra-high molecular weight polyethylene (UHMWPE) which leads to aseptic loosening of the implant. Little has been done to reduce wear due to the femoral component properties in knee joint replacement. Scratching of the femoral component has been identified in retrieved knee replacements. Using a material that has a higher scratch resistance than current metals may reduce the rate of UHMWPE wear in knee replacements. In this study we investigated the effects of using an oxidized
Aims. The aim of this study was to evaluate fretting and corrosion in retrieved oxidized
Introduction. Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized
Introduction. Detailed analysis of retrieved total hip replacements (THRs) is valuable for assessing implant and material successes and failures. Reduction of bearing wear and corrosion and fretting of the head-neck trunnion is essential to implant durability and patient health. This research quantifies and characterizes taper and bearing surface damage on retrieved oxidized
Oxidized
Aims. We sought to establish whether an oxidised
Background And Aims: Total knee replacements provide a cost effective treatment for painful joint conditions such as osteoarthritis. Their long term performance is governed by ultra-high molecular weight polyethylene (UHMWPE) wear which produces wear debris and leads to osteolysis and aseptic loosening of the implant. Using a new material which is more scratch resistant than cobalt chrome it is hoped to reduce wear of UHMWPE and its subsequent complications. Methods: Two total knee replacements made from cobalt chrome and two of oxidised
Introduction. The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized
While Oxidized
The purpose of this study was to precisely measure the 10-year polyethylene wear rate of primary total hips using Radiostereometric analysis (RSA) comparing Oxidized
Total knee arthroplasty is a well-established treatment for degenerative joint disease, on the other hand metal ion release of cobalt or chromium and particle formation can trigger intolerance reactions. Biotribological examinations can help to assess the metal ion release in different settings. The purpose of this study was the evaluation of inter-laboratory differences in the metal ion concentration analysis. Samples were generated in a 3+1 station knee wear simulator (EndoLab GmbH, Thansau, Germany) with a medium size Columbus Knee System with or without AS multilayer coating. The wear simulation was performed under highly demanding activity (HDA) profile and samples were taken after 0.5, 5.0, 5.5. and 8.0 million cycles. The samples were blinded and sent to three different laboratories and the content of chromium, cobalt, molybdenum, nickel, and
Oxidised
This study reports the ten-year polyethylene liner wear rates, incidence of osteolysis, clinical outcomes and complications of a three-arm, multicentre randomised controlled trial comparing Cobalt-Chrome (CoCr) and Oxidised
Despite many claims of good wear properties following
total knee replacement (TKR) with an oxidised
This study reports the ten-year outcomes of a three-arm, multicentre randomised controlled trial comparing Cobalt-Chrome (CoCr) and Oxidised