Background. Patellofemoral complications have dwindled with contemporary total knee designs that market anatomic
Total knee arthroplasty (TKA) is widely accepted as a successful surgical intervention to treat osteoarthritis and other degenerative diseases of the knee. However, present statistics on limited survivorship and patient-satisfaction emphasise the need for an optimal endoprosthetic care. Although, the implant design is directly associated with the clinical outcome comprehensive knowledge on the complex relationship between implant design (morphology) and function is still lacking. The goal of this study was to experimentally analyse the relationship between the
“The shortest distance between two points is a straight line.” This explains many cases of patellar maltracking, when the patellar track is visualised in three dimensions. The three-dimensional view means that rotation of the tibia and femur during flexion and extension, as well as rotational positioning of the tibial and femoral components are extremely important. As the extensor is loaded, the patella tends to “center” itself between the patellar tendon and the quadriceps muscle. The patella is most likely to track in the
BACKGROUND. Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1]. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. METHODS. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the
Abnormal patella height has been found to be one of the main reasons for abnormal contact between patella and
INTRODUCTION. Over the past 40 years of knee arthroplasty, significant advances have been made in the design of knee implants, resulting in high patient satisfaction. Patellar tracking has been central to improving the patient experience, with modern designs including an optimized Q-angle, deepened
BACKGROUND. Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. METHODS. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona. ®. implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. RESULTS. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic
Introduction. Patellar crepitus and clunk are tendofemoral-related complications predominantly associated with posterior-stabilizing (PS) total knee arthroplasty (TKA) designs [1]. Contact between the quadriceps tendon and the femoral component can cause irritation, pain, and catching of soft-tissue within the intercondylar notch (ICN). While the incidence of tendofemoral-related pathologies has been documented for some primary TKA designs, literature describing revision TKA is sparse. Revision components require a larger boss resection to accommodate a constrained post-cam and stem/sleeve attachments, which elevates the entrance to the ICN, potentially increasing the risk of crepitus. The objective of this study was to evaluate tendofemoral contact in primary and revision TKA designs, including designs susceptible to crepitus, and newer designs which aim to address design features associated with crepitus. Methods. Six PS TKA designs were evaluated during deep knee bend using a computational model of the Kansas knee simulator (Figure 1). Prior work has demonstrated that tendofemoral contact predictions from this model can differentiate between TKA patients with patellar crepitus and matched controls [2]. Incidence of crepitus of up to 14% has been reported in Insall-Burstein® II and PFC® Sigma® designs [3]. These designs, in addition to PFC® Sigma® TC3 (revision component), were included in the analyses. Primary and revision components of newer generation designs (NexGen®, Attune® and Attune® Revision) were also included. Designs were evaluated in a patient model with normal Insall-Salvati ratio and a modified model with patellar tendon length reduced by two standard deviations (13mm) to assess worst-case patient anatomy. Results. During simulations with normal patellar tendon length, only PFC® Sigma® and PFC® Sigma® TC3 showed tendofemoral contact within the trochlea, and no design showed contact at the transition to the ICN (Figure 2). In simulations with patella baja, Insall-Burstein® II, PFC® Sigma®, and PFC® Sigma® TC3, demonstrated tendofemoral contact across the trochlea at the transition into the notch. In contrast, NexGen®, Attune® and Attune® Revision showed tendon contact for approximately half the width of the transition to the notch (Figure 3). PFC® Sigma® and Attune® demonstrated very similar tendofemoral contact to their equivalent revision components, although the shorter
Patella resurfacing is becoming more routine in total knee replacements with recent reports indicating improved long term outcomes. Despite this, patella osteotomy relies heavily on how the cutting jig is applied rather than on fixed anatomical landmarks. Recognised complications of asymmetric patella resection are patella fractures, patella maltracking, bony impingement and pain. Accurate instruments have been developed for other aspects of total knee replacements. However cutting guides for the patella tend to be cumbersome with poor reproducibility. Patella tilt is defined as the angle subtended by a line joining the medial and lateral edges of the patella and the horizontal. Keeping this angle to a minimum results in congruent alignment of the patella button within the
Introduction. Mechanical integrity of patella can be weakened by the technique of removing the articulating surface. The senior author developed the technique of maintaining subchondral bone of the lateral patellar facet in early 1980s. Though laboratory studies have demonstrated deleterious effect of excessive resection of patella on the strains in the remaining bone under load; clinical studies have not shown the importance of strong subchondral bone of lateral facet to have an effect on patellar fracture prevalence. We present the results of our patellar resection technique preserving the subchondral bone of lateral facet. Methods. 393 TKRs were performed between 1989 and 1996 using cruciate substituting modular knee with recessed femoral
Purpose. Femoral component malrotation is a common cause for persisting symptoms and revision following total knee arthroplasty (TKA). There is ongoing debate about the most appropriate use of femoral landmarks to determine rotation. The Sulcus Line (SL, See Figure 1) is a three-dimensional curve produced from multiple points along the
When dealing with the patella in total knee arthroplasty (TKA) there are three philosophies. Some advocate resurfacing in all cases, others do not resurface, and a third group selectively resurfaces the patella. The literature does not offer one clear and consistent message on the topic. Treatment of the patella and the ultimate result is multifactorial. Factors include the patient, surgical technique, and implant design. With respect to the patient, inflammatory versus non-inflammatory arthritis, pre-operative presence or absence of anterior knee pain, age, sex, height, weight, and BMI affect results of TKA. Surgical technique steps to enhance the patellofemoral articulation include: 1) Restore the mechanical axis to facilitate patellofemoral tracking. 2) Select the appropriate femoral component size with respect to the AP dimension of the femur. 3) When performing anterior chamfer resection, measure the amount of bone removed in the center of the resection and compare to the prosthesis. Do not overstuff the patellofemoral articulation by taking an inadequate amount of bone. 4) Rotationally align the femur appropriately using a combination of the AP axis, the transepicondylar axis, the posterior condylar axis, and the tibial shaft axis. 5) If faced with whether to medialise or lateralise the femoral component, always lateralise. This will enhance patellofemoral tracking. 6) When resurfacing the patella, only evert the patella after all other bony resections have been performed. Remove peripheral osteophytes and measure the thickness of the patella prior to resection. Make every effort to leave at least 15 mm of bone and never leave less than 13 mm. 7) Resect the patella. The presenter prefers a freehand technique using the insertions of the patellar tendon and quadriceps tendon as a guide, sawing from inferior to superior, then from medial to lateral to ensure a smooth, flat, symmetrical resection. Medialise the patellar component and measure the thickness of reconstruction. 8) When not resurfacing the patella, surgeons generally remove all the peripheral osteophytes, and some perform denervation using electrocautery around the perimeter. 9) Determine appropriate patellofemoral tracking only after the tourniquet is released. 10) Close the knee in flexion so as not to tether the soft tissues about the patella and the extensor. With or without patellar resurfacing, implant design plays in important role in minimizing patellofemoral complications. Newer designs feature a so-called “swept back” femur in which the chamfer resection is deepened, and patellofemoral overstuffing is minimised. Lateralizing the
Background. Although early TKA designs were symmetrical, during the past two decades TKA have been designed to include asymmetry, pertaining to either the
Background. The goal of patellofemoral arthroplasty (PFA) is to replace damaged cartilage, and to correct underlying deformities, to reduce pain and prevent maltracking. We aimed to determine how PFA modifies patellar height, tilt, and tibial tuberosity to
Patellofemoral complaints are the common and nagging problem after total knee arthroplasty. Crepitus occurs in 5% to over 20% of knee arthroplasty procedures depending on the type of implant chosen. It is caused by periarticular scar formation with microscopic and gross findings indicating inflammatory fibrous hyperplasia. Crepitus if often asymptomatic and not painful, but in some cases can cause pain. Patella “Clunk Syndrome” is less common and represents when the peripatella scarring is abundant and forms a nodule which impinges and “catches” on the implant's intercondylar notch. Patella Clunk was more common with early PS designs due to short
Introduction. Studies have shown that dissatisfaction following TKA may stem from poor component placement and iatrogenic factors related to variability in surgical execution. A CT-based robotic assisted system (RA) allows surgeons to dynamically balance the joint prior to bone resection. This study aimed to determine if this system could improve TKA planning, reduce soft tissue releases, minimize bone resection, and accurately predict component size in varus knee. Method. Four hundred and seventy four cases with varus deformity undergoing primary RATKA were enrolled in this prospective, single center and surgeon study. Patient demographics and intraoperative surgical details were collected. Initial and final 3-dimensional alignment, component position, bone resection depths, use of soft tissue releases, knee balancing gaps, and component size were collected intraoperatively. WOMAC and KOOS Jr. scores were collected 6 months, and 1 year postoperatively. Descriptive statistics were applied to determine the changes in these parameters between initial and final values. Results. Native deformity ranged from 1 to 19 degrees of varus. 86% of patients in this study did not require a soft tissue release regardless of their level of coronal or sagittal deformity. Complex deformities who required a soft tissue release were corrected on average to 3 degrees varus while cases without releases were corrected to 2 degrees varus on average with the overall goal as traditional mechanical alignment. All surgeons achieved their planned sizes on the tibia and femur more than 98% of the time within one size, and 100% of the time within two sizes. Flexion and extension gaps during knee balancing were within 2mm (mean 1mm) for all knees. At latest follow-up, radiographic evidence suggested well-seated and well-fixed components. Radiographs also indicated the patella components were tracking well within the
Each of the seven cuts required for a total knee arthroplasty has its own science, and can affect the outcome of surgery. Distal Femur. Sets the axial alignment (along with the tibial cut), and too little or too much depth affects ligament tension in extension. Anterior Femur. Sets the rotation of the femoral component, which affects patellar tracking. Internal rotation results in patellar maltracking. External rotation will either notch the femur, or cause too large a femoral component to be selected. Anterior and posterior femoral cuts also determine femoral component size selection. Too small a femoral component causes notching, flexion instability, and mismatch to the tibial component. Too big a femoral component causes overstuffing, periarticular pain, and patellar maltracking. Posterior Femur. Posterior referencing usually works, and the typical knee requires 3 degrees of external rotation to align with the transepicondylar axis. In valgus knees, there may be significant hypoplasia of the lateral femoral condyle, and posterior referencing has to be adjusted to avoid internal rotation. Posterior chamfer. A 4-in-one block saves time. Anterior chamfer. Deeper anterior chamfer allows a deeper
Introduction. Valgus deformity in an end stage osteoarthritic knee can be difficult to correct with no clear consensus on case management. Dependent on if the joint can be reduced and the degree of medial laxity or distension, a surgeon must use their discretion on the correct method for adequate lateral releases. Robotic assisted (RA) technology has been shown to have three dimensional (3D) cut accuracy which could assist with addressing these complex cases. The purpose of this work was to determine the number of soft tissue releases and component orientation of valgus cases performed with RA total knee arthroplasty (TKA). Methods. This study was a retrospective chart review of 72 RATKA cases with valgus deformity pre-operatively performed by a single surgeon from July 2016 to December 2017. Initial and final 3D component alignment, knee balancing gaps, component size, and full or partial releases were collected intraoperatively. Post-operatively, radiographs, adverse events, WOMAC total and KOOS Jr scores were collected at 6 months, 1 year and 2 year post-operatively. Results. Pre-operatively, knee deformities ranged from reducible knees with less than 5mm of medial laxity to up to 12° with fixed flexion contracture. All knees were corrected within 2.5 degrees of mechanical neutral. Average femoral component position was 0.26. o. valgus, and 4.07. o. flexion. Average tibial component position was 0.37. o. valgus, and 2.96. o. slope, where all tibial components were placed in a neutral or valgus orientation. Flexion and extension gaps were within 2mm (mean 1mm) for all knees. Medial and lateral gaps were balanced 100% in extension and 93% in flexion. The average flexion gap was 18.3mm and the average extension gap was 18.7mm. For component size prediction, the surgeon achieved their planned within one size on the femur 93.8% and tibia 100% of the time. The surgeon upsized the femur in 6.2% of cases. Soft tissue releases were reported in one of the cases. At latest follow-up, radiographic evidence suggested well seated and well fixed components. Radiographs also indicated the patella components were tracking well within the
Introduction. Patella implant research is often overlooked despite its importance as the third compartment in a total knee replacement. Wear and fracture of resurfaced patellae can lead to implant failure and revision surgeries. New simulation techniques have been developed to analyze the performance of patella designs as they interact with the
Osteochondral (OC) defects of the knee are associated with pain and significant limitation of activity. Studies have demonstrated the therapeutic efficacy of mesenchymal stem cell (MSC) therapies in treating osteochondral defects. There is increasing evidence that the efficacy of MSC therapies may be a result of the paracrine secretion, particularly exosomes. Here, we examine the effects of MSC exosomes in combination with Hyaluronic Acid (HA) as an injectable therapy on functional osteochondral regeneration in a rabbit osteochondral defect model. Exosomes were purified from human MSC conditioned medium by size fractionation. A circular osteochondral defect of 4.5 mm diameter and 2.5 mm depth was surgically created in the