Advertisement for orthosearch.org.uk
Results 1 - 20 of 45
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 11 - 11
1 Feb 2017
Harris S Dhaif F Iranpour F Aframian A Auvinet E Cobb J Howell S Riviere C
Full Access

BACKGROUND. Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1]. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. METHODS. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments - (fig.1). Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. RESULTS. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001) - (fig.2). CONCLUSIONS. Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 119 - 119
1 Sep 2012
Al-Nammari S Al-Hadithy N
Full Access

Introduction

Isolated trochlea fractures are very rare and have only been described previously as case reports.

Aims

To report on a case of isolated trochlea fracture and to present a review of the literature.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND. Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. METHODS. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona. ®. implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. RESULTS. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively (figure 3). CONCLUSION. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. The clinical impact of this finding remains to be defined. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 49 - 49
1 Jan 2016
Monk A Mellon S Chen M Beard D Gill H Murray D
Full Access

Introduction. Knee arthroplasty is an effective intervention for painful arthritis when conservative measures have failed. Despite recent advances in component design and implantation techniques, a significant proportion of patients experience problems relating to the patella-femoral joint (PFJ). Detailed knowledge of the shape and orientation of the normal and replaced femoral trochlea groove is critical when considering potential causes of anterior knee pain. Furthermore, to date it has proved difficult to establish a diagnosis due to shortcomings in current imaging techniques for obtaining satisfactory coronal plane motion data of the patella in the replaced knee. The aim of this study was to correlate the trochlea shape of normal and replaced knees with corresponding coronal plane PFJ kinematic data. Method. Bony and cartilagenous trochlea geometries from 3T MRI scans of 20 normal healthy volunteers were compared with both anatomical and standard total knee replacements (TKR) and patellofemoral joint replacement (PFJR) geometries. Following segmentation and standardized alignment, the path of the apex of the trochlea groove was measured using customized Matlab software. (Fig1). Next, kinematic data of the 20 normal healthy volunteers (Normal) was compared with that of 20 TKR, and 20 PFJR patients using the validated MAUS. TM. system (Motion Analysis and UltraSound) comprising a 12-camera, motion capture system used to capture images of reflective markers mounted on subjects lower limbs and an ultrasound probe. A mapping between the ultrasound image and the motion capture system allows the ultrasound probe to be used to determine the locations of the patella relative to bony landmarks on the femur during a squat exercise. Results. In normal knees the arc of the trochlear groove apex was orientated progressively laterally for both cartilage and. Neither of these trends were reproduced by any of the knee prostheses. Indeed far from being a laterally directed trochlea groove, both the anatomic TKR and PFJR have a medially orientated trochlea, whilst the TKR showed a neutral straight path (Figure 2). The direction of displacement in the replaced knee is significantly different (opposite) to that of the native knee (p<0.05). The accuracy of the MAUS technique registering the ultrasound images within the motion capture system is 1.84 mm (2 × SD). The three groups showed very different patella tracking patterns which matched the orientation of the underlying trochlea (Figure 3). The sine wave pattern of coronal plane patella motion displayed by the Normal group was not recreated in the TKR or PFJR groups. Movements of the Normal group were significantly different from the TKR group (p=0.03) and the PFJR group (p<0.01), whilst there was no significant difference between the TKR and PFJR groups (p=0.27). Discussion. We present a new, accurate, reliable in vivo technique for measuring 3D patellofemoral kinematics in native and replaced knees. Our data suggest that many aspects of patellofemoral kinematics are absent following TKR and PFJR. This can be explained by the differences in shape of the underlying femoral component. Anterior knee pain problems might be addressed by alterations to the patellofemoral joint in future designs of knee arthroplasty


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 8 - 8
1 Aug 2013
Piriou P Peronne E
Full Access

Rotational positioning of the femoral component during the realisation of a total knee arthroplasty is an important part of the surgical technique and remains a topic of discussion in the literature. The challenge of this positioning is important because it determines the anatomical result and its effect on the flexion gap and clinical outcome mainly through its impact on patellofemoral alignment. The intraoperative identification of the axis transepicondylar visually or by navigation is not reliable or reproducible. The empirical setting to 3 ° of external rotation, the procedure used to cut or dependent or independent is not adapted to the individual variability of knee surgery. Indeed, the angle formed by the posterior condylar axis and trans-epicondylar axis is subject to large individual variations. The authors propose a novel technique, using the navigation of the trochlea to determine the rotation of the femoral component. The principle is to consider the rotation of the femoral implant as “ideal” when it makes a perfect superposition of the prosthetic trochlea with the native bony trochlea on patellofemoral view at 60° when planning the femur. The bottom of the prosthetic trochlea is well aligned with the trochlea groove, identified during the trochlear morphing, itself perpendicular to the trans-epicondylar axis. The authors hope to encourage centering patellofemoral joint prosthesis, thus favoring the original kinematics of the extensor apparatus. The purpose of this study is to demonstrate firstly, that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and the other, the rotation control by this method is not done at the expense of the balance gap in flexion. It is a bi-centric study prospective, nonrandomised, including continuously recruited 145 patients in two French centers. All patients were included in the year 2010 and have all been revised three months and one year of surgery. The average age of patients was 71 years [53, 88]. It was made no selection of patients who have all been included consecutively in the study and in the two centres. In all cases, the rotation of the femoral component was determined by intraoperative navigation of the trochlea. The authors compared the alpha angle (angular divergence between the plane and the posterior bicondylar plane and trans-epicondylar axis) obtained by this method and that calculated on a pre-or postoperative scan. The authors also measured the space between femur and tibia internal and external side in flexion (90°) to assess the impact on the balance in flexion. There is excellent agreement between the results obtained by the method of CT scan and the trochlear navigation technique. In addition, this technique allows us to achieve a quadrilateral space gap in flexion. The authors found large individual variation in the distal femoral epiphyseal torsion (angle alpha). They demonstrate that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and provides, concomitantly, a quadrilateral space gap in flexion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 113 - 113
1 Aug 2013
Piriou P Peronne E
Full Access

Rotational positioning of the femoral component during the realisation of a total knee arthroplasty is an important part of the surgical technique and remains a topic of discussion in the literature. The challenge of this positioning is important because it determines the anatomical result and its effect on the flexion gap and clinical outcome mainly through its impact on patellofemoral alignment. The intraoperative identification of the axis transepicondylar visually or by navigation is not reliable or reproducible. The empirical setting to 3 ° of external rotation, the procedure used to cut or dependent or independent is not adapted to the individual variability of knee surgery. Indeed, the angle formed by the posterior condylar axis and trans-epicondylar axis is subject to large individual variations. The authors propose a novel technique, using the navigation of the trochlea to determine the rotation of the femoral component. The principle is to consider the rotation of the femoral implant as “ideal” when it makes a perfect superposition of the prosthetic trochlea with the native bony trochlea on patellofemoral view at 60 ° when planning the femur. The bottom of the prosthetic trochlea is well aligned with the trochlea groove, identified during the trochlear morphing, itself perpendicular to the trans-epicondylar axis. The authors hope to encourage centering patellofemoral joint prosthesis, thus favouring the original kinematics of the extensor apparatus. The purpose of this study is to demonstrate firstly, that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and the other, the rotation control by this method is not done at the expense of the balance gap in flexion. It is a bi-centric study prospective, nonrandomised, including continuously recruited 145 patients in two French centres. All patients were included in the year 2010 and have all been revised three months and one year of surgery. The average age of patients was 71 years [53, 88]. It was made no selection of patients who have all been included consecutively in the study and in the two centres. In all cases, the rotation of the femoral component was determined by intraoperative navigation of the trochlea. The authors compared the alpha angle (angular divergence between the plane and the posterior bicondylar plane and trans-epicondylar axis) obtained by this method and that calculated on a pre-or postoperative scan. The authors also measured the space between femur and tibia internal and external side in flexion (90°) to assess the impact on the balance in flexion. There is excellent agreement between the results obtained by the method of CT scan and the trochlear navigation technique. In addition, this technique allows to achieve a quadrilateral space gap in flexion. The authors found large individual variation in the distal femoral epiphyseal torsion (angle alpha). They demonstrate that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and provides, concomitantly, a quadrilateral space gap in flexion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 175 - 175
1 May 2012
Minas T Bryant T
Full Access

To assess the clinical outcomes of patients undergoing ACI in the patellofemoral joint. Level of evidence. Therapeutic study, Level II-1 (prospective cohort study). In a prospective study to determine the clinical effectiveness of autologous chondrocyte implantation 130 patients reached a minimum follow up of two years (range, 2–9 years, average 56.5 months) after treatment involving the patellofemoral articulation. There were 77 men (59%) and 53 women (41%) with an average age of 37.5 years (range, 15-57years). The treatment groups included I) isolated patella, n = 14; II) isolated trochlea, n = 15; III) patella plus trochlea, n = 5; IV) weight bearing condyle plus patella n = 19; V) weight bearing condyle plus trochlea, n = 52; VI) weight bearing condyle plus patella plus trochlea n = 25. The average surface area per patella, n = 63, was 4.72 cm2 and per trochlea, n = 98, was 5.8cm2. The average resurfacing per knee, n = 130, was 11.03cm2. This prospective outcome study demonstrated a significant postoperative improvement in quality of life as measured by the SF-36; WOMAC, Knee Society Score, modified Cincinnati Score and a patient satisfaction survey. There were 16 failures (12%) as a result of a patella or trochlea failure. Eighty percent of patients rated their outcomes as good or excellent, 18% rated outcome as fair, and 2% rated outcome as poor. ACI is effective in the patellofemoral joint and specifically is a complementary intervention for those patients that will predictably do poorly with an isolated Fulkerson Tibial Tubercle osteotomy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 29 - 29
1 May 2016
Harris S Iranpour F Riyat H Cobb J
Full Access

Introduction. The trochlea of a typical patellofemoral replacement or anterior flange of a total knee replacement usually extends past the natural trochlea and continues onto the femoral anterior cortex. One reason for this is that it allows a simple patella button to be permanently engaged in the trochlea groove in an attempt to ensure stability. On the natural patella, the apex helps to guide it into the trochlea groove as the knee moves from full extension into flexion. The aim is to study whether a generalised patella can be created that is close in form to a healthy patella. Method. MRI scans were taken of 30 patellae. Characteristics of these patellae (height, width, thickness, apex angle) were measured. The apex angle was found to be similar between patellae (mean=126 degrees, sd = 8.8), as were the ratios between height and width (mean width/height = 1.05, sd = 0.07) and between thickness and width (mean width/thickness = 1.8, sd = 0.19). These patellae were then segmented to create a surface including cartilage, resulting in 30 STL (stereolithography) files in which the surfaces are represented by triangle meshes. To design the average patella the individual patellae were aligned to a standard frame of reference by placing a set of landmarks on the proximal/distal, medial/lateral and anterior/posterior extents of each (fig.1). The vertical axis was defined as passing parallel to the proximal/distal points and the horizontal as passing parallel to the medial/lateral points when looking along the computed vertical axis. The origin centre of the frame of reference was chosen to be mid-way between these points. The mean width was then computed and each patella scaled linearly around the origin to give them all equal width. All the aligned patellae were then averaged together to provide a composite cartilaginous patella. The averaging process was achieved by taking one patella as a seed. The patella chosen for seed was that whose parameters were closest to the average width, height and thickness. An approximately normal vector was passed a point ‘P’ on the seeds, and the points at which these intersected the other models were then determined. The closest intersection point to ‘P’ on each model was chosen and these averaged together. ‘P’ is then replaced in the model with this average point. The averaging process then continues with all the remaining points on the seed model in the same manner to build the average models. Results and Discussion. The mean patella was compared with individual patellae. This comparison was performed by taking each point on the mean patella and finding the closest point on individual patellae - a colour coded map of differences was obtained (fig.2) along with a mean of the absolute difference for each patella. The absolute mean difference ranged from 0.56mm to 1.33mm, averaging at 0.85mm. This shows a reasonable fit between the average patella and each individual example, raising the possibility of using the average shape in future research to develop anatomical patellofemoral replacements and for planning patella resurfacing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 118 - 118
1 Feb 2017
Fitzpatrick C Clary C Rullkoetter P
Full Access

Introduction. Patellar crepitus and clunk are tendofemoral-related complications predominantly associated with posterior-stabilizing (PS) total knee arthroplasty (TKA) designs [1]. Contact between the quadriceps tendon and the femoral component can cause irritation, pain, and catching of soft-tissue within the intercondylar notch (ICN). While the incidence of tendofemoral-related pathologies has been documented for some primary TKA designs, literature describing revision TKA is sparse. Revision components require a larger boss resection to accommodate a constrained post-cam and stem/sleeve attachments, which elevates the entrance to the ICN, potentially increasing the risk of crepitus. The objective of this study was to evaluate tendofemoral contact in primary and revision TKA designs, including designs susceptible to crepitus, and newer designs which aim to address design features associated with crepitus. Methods. Six PS TKA designs were evaluated during deep knee bend using a computational model of the Kansas knee simulator (Figure 1). Prior work has demonstrated that tendofemoral contact predictions from this model can differentiate between TKA patients with patellar crepitus and matched controls [2]. Incidence of crepitus of up to 14% has been reported in Insall-Burstein® II and PFC® Sigma® designs [3]. These designs, in addition to PFC® Sigma® TC3 (revision component), were included in the analyses. Primary and revision components of newer generation designs (NexGen®, Attune® and Attune® Revision) were also included. Designs were evaluated in a patient model with normal Insall-Salvati ratio and a modified model with patellar tendon length reduced by two standard deviations (13mm) to assess worst-case patient anatomy. Results. During simulations with normal patellar tendon length, only PFC® Sigma® and PFC® Sigma® TC3 showed tendofemoral contact within the trochlea, and no design showed contact at the transition to the ICN (Figure 2). In simulations with patella baja, Insall-Burstein® II, PFC® Sigma®, and PFC® Sigma® TC3, demonstrated tendofemoral contact across the trochlea at the transition into the notch. In contrast, NexGen®, Attune® and Attune® Revision showed tendon contact for approximately half the width of the transition to the notch (Figure 3). PFC® Sigma® and Attune® demonstrated very similar tendofemoral contact to their equivalent revision components, although the shorter trochlear groove of Attune® Revision marginally increased contact at the transition. Discussion. Insall-Burstein® II, PFC® Sigma®, and PFC® Sigma® TC3 designs showed full contact with the quadriceps tendon at the anterior border of the ICN when combined with a short patellar tendon. NexGen®, Attune® and Attune® Revision had a more gradual transition between the trochlea and the notch, which resulted in less exposure to tendon contact. Even with the shorter trochlear groove required for revision components, Attune® Revision showed minimal difference in tendofemoral contact when compared with Attune®. There appears to be distinct benefit in a femoral design which reduces tendofemoral contact at the transition to the ICN; this may be of particular importance for patients with patella baja


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 143 - 143
1 Feb 2017
Matz J Lanting B Howard J Teeter M
Full Access

Introduction. Anterior knee pain following total knee arthroplasty continues to be prevalent and may result from abnormal loading of the patellofemoral joint. The kinematics and biomechanics of the patellofemoral joint are complex, and trochlear design likely plays a principle role in affecting patellofemoral contact. As such, understanding the implications of trochlear design on patellofemoral contact remains important. The goal of the present study was to characterize trochlear wear of retrieved femoral components, which may help elucidate the details regarding patellofemoral kinematics and contact properties in relation to design features. Materials and Methods. Retrieved femoral components featuring a single design (cobalt-chrome, posterior stabilized, cemented components with fixed bearing design) were included in the study. Components were selected based on similar time-in-vivo, age, and BMI. The trochlea of femoral components was consistently divided into six equal zones. Trochlear wear and surface damage in each zone were assessed using visual inspection under low-magnification light microscopy and light profilometry. Results. Ten implants were selected and were used for the topographical analysis. The implants were selected based on time-in-vivo (33.6 months±18), BMI (40.4 kg/m. 2. ±13.2), patient age (67.9 years old±13.3) and gender (6 males, 4 females). Revision diagnosis across the implants were infection (n=6), instability (n=2), loosening (n=1), and fracture (n=1). All zones of the trochlea of retrieved femoral components showed evidence of wear on visual assessment, however, surface profilometry showed that the amount of wear in the retrieved components was not significantly different from a new, unused reference component (p>0.05). In fact, surface skeweness was higher in the new component (p=0.026). Modes of wear included scratches (100%), striations (65%), pitting (43%), and delamination (13%). Zone 1, which includes the raised lateral flange, tended to have more damage than the other zones, but this was statistically non-significant (p=0.634). No significant differences were found between the remaining trochlear zones with respect to wear based on visual assessment and light-microscopy (p=0.634) or surface profilometry (p=0.469). No significant differences were found with between proximal and distal wear (p>0.05) as well as medial and lateral trochlear wear (p>0.05). Conclusions. Femoral components exhibit trochlear wear after in-vivo use. The amount of wear, however, is not substantially different from its new state and may represent early polishing. While the raised lateral flange zone trended towards greater wear than other zones, this was not statistically significant. Overall, with modern trochlear design, there was no evidence of asymmetric or abnormal loading of the trochlea. Longer term retrieval studies are required to assess patterns of femoral component wear and determine the clinical correlation of these findings


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 371 - 371
1 Dec 2013
Wright S Boymans TA Miles T Grimm B Kessler O
Full Access

Introduction. The human body is a complex and continually adapting organism. It is theorised that the morphology of the proximal femur is closely related to that of the distal femur. Patients that have abnormal anatomy in the proximal femur, such as a high femoral neck anteversion angle, may have abnormal anatomy in the distal femur to overcome proximal differences. This phenomenon is of key interest when performing Total Hip Replacement (THR) or Total Knee Replacement (TKR) surgery. The current design and placement of existing hip and knee implants does not account for any correlation between the anatomical parameters of the proximal and distal femur, where bone anatomy may have adapted to compromise for abnormalities. A preliminary study of 21 patients has been carried out to assess the relationship between the proximal and distal femur. The difficulties in defining and measuring key anatomical parameters on the femur have been widely discussed in the literature [1] due to its complex three dimensional geometry. Using CT scans of healthy octogenarians, it was possible to mark key anatomical landmarks which could be used to define various anatomical axes throughout the femur. Correlation analyses could then be carried out on these parameters to assess the relationship between proximal and distal femur morphology. Methods. Each femur was initially realigned along the mechanical axis (MA); defined by joining the centre of the femoral head (FHC) to the centre of the intercondylar notch (INC) [2]. All anatomical landmarks were then identified using the Materialise Mimics v12 software (Figure 1 and 2) and exported into Microsoft Excel for analysis. Key anatomical parameters which were derived from these landmarks included the femoral neck axis (FNA), femoral neck anteversion angle (FNAA) [1–4], condylar twist angle, clinical transepicondylar axis (TEA), trochlea sulcus angle and medial and lateral trochlea twist. A correlation analysis was carried out on SPSS Statistics v20 (IBM) to assess the relationship between proximal and distal anatomical parameters. Results. The correlation analysis displayed a positive linear correlation between the FNAA and the clinical TEA (adjusted R squared = 0.471, p < 0.001) indicating that an abnormally high FNAA is correlated with a higher TEA angle (Figure 3). No strong relationship was found between the FNAA and the additional distal parameters compared, in particular there was no trend between the FNAA and the geometry of the trochlea as measured by the sulcus angle and trochlea twist. Discussion. The morphology of the distal femur seems to be at least partially correlated with the proximal femur and the relationship should be studied further to assess any potential effect on THA and TKA surgery. An extension of this study should assess an increased patient sample size and further anatomical parameters


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 51 - 51
1 May 2016
Iranpour F Auvinet E Harris S Cobb J
Full Access

Patellofemoral joint (PFJ) arthroplasty is traditionally performed using mechanical jigs to align the components, and it is hard to fine tune implant placement for the individual patient. These replacements have not had the same success rate as other forms of total or partial knee replacement surgery1. Our team have developed a computer assisted planning tool that allows alignment of the implant based on measurements of the patient's anatomy from MRI data with the aim of improving the success of patellofemoral joint arthroplasty. When planning a patellofemoral joint arthroplasty, one must start from the premise that the original joint is either damaged as a result of osteoarthritis, or is dysplastic in some way, deviating from a normal joint. The research aimed to plan PFJ arthroplasty using knowledge of the relationship between a normal PFJ (trochlear groove, trochlea axis and articular surfaces) and other aspects of the knee2, allowing the plan to be estimated from unaffected bone surfaces, within the constraints of the available trochlea. In order to establish a patient specific trochlea model a method was developed to automatically compute an average shape of the distal femur from normal distal femur STL files (Fig.1). For that MRI scans of 50 normal knees from osteoarthritis initiative (OAI) study were used. Mimics and 3-matic software (Materialise) packages were used for segmentation and analysis of 3D models. Spheres were fitted to the medial and lateral flexion facets for both average knee model and patient knee model. The average knee was rescaled and registered in order to match flexion facet axis (FFA) distance and FFA midpoint of the patient (Fig.2). The difference between the patient surface and the average knee surface allow to plan the patella groove alteration. The Patella cut is planned parallel to the plane fitted to the anterior surface of the patella. The patella width/thickness ratio (W/T=2) is used to predict the post reconstruction thickness3. The position of the patella component (and its orientation if a component with a median ridge is used) is also planned. The plan is next fine-tuned to achieve satisfactory PFJ kinematics4 (Fig.3). This will be complemented by intraoperative PFJ tracking which assists with soft tissue releases. PFJ kinematics is evaluated in terms of patella shift, tilt and deviation from the previously described circular path of the centre of the patella. The effect of preoperative planning on PFJ tracking and soft tissue releases is being examined. Additional study is needed to evaluate whether planning and intraoperative kinematic measurements improve the clinical outcome of PFJ arthroplasty


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 2 - 2
1 Aug 2020
Matache B King GJ Watts AC Robinson P Mandaleson A
Full Access

Total elbow arthroplasty (TEA) usage is increasing owing to expanded surgical indications, better implant designs, and improved long-term survival. Correct humeral implant positioning has been shown to diminish stem loading in vitro, and radiographic loosening in in the long-term. Replication of the native elbow centre of rotation is thought to restore normal muscle moment arms and has been suggested to improve elbow strength and function. While much of the focus has been on humeral component positioning, little is known about the effect of positioning of the ulnar stem on post-operative range of motion and clinical outcomes. The purpose of this study is to determine the effect of the sagittal alignment and positioning of the humeral and ulnar components on the functional outcomes after TEA. Between 2003 and 2016, 173 semi-constrained TEAs (Wright-Tornier Latitude/Latitude EV, Memphis, TN, USA) were performed at our institution, and our preliminary analysis includes 46 elbows in 41 patients (39 female, 7 male). Patients were excluded if they had severe elbow deformity precluding reliable measurement, experienced a major complication related to an ipsilateral upper limb procedure, or underwent revision TEA. For each elbow, saggital alignment was compared pre- and post-operatively. A best fit circle of the trochlea and capitellum was drawn, with its centre representing the rotation axis. Ninety degree tangent lines from the intramedullary axes of the ulna and humerus, and from the olecranon tip to the centre of rotation were drawn and measured relative to the rotation axis, representing the ulna posterior offset, humerus offset, and ulna proximal offset, respectively. In addition, we measured the ulna stem angle (angle subtended by the implant and the intramedullary axis of the ulna), as well as radial neck offset (the length of a 90o tangent line from the intramedullary axis of the radial neck and the centre of rotation) in patients with retained or replaced radial heads. Our primary outcome measure was the quickDASH score recorded at the latest follow-up for each patient. Our secondary outcome measures were postoperative flexion, extension, pronation and supination measured at the same timepoints. Each variable was tested for linear correlation with the primary and secondary outcome measures using the Pearson two-tailed test. At an average follow-up of 6.8 years (range 2–14 years), there was a strong positive correlation between anterior radial neck offset and the quickDASH (r=0.60, p=0.001). There was also a weak negative correlation between the posterior offset of the ulnar component and the qDASH (r=0.39, p=0.031), and a moderate positive correlation between the change in humeral offset and elbow supination (r=0.41, p=0.044). The ulna proximal offset and ulna stem angle were not correlated with either the primary, or secondary outcome measures. When performing primary TEA with radial head retention, or replacement, care should be taken to ensure that the ulnar component is correctly positioned such that intramedullary axis of the radial neck lines up with the centre of elbow rotation, as this strongly correlates with better function and less pain after surgery


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 144 - 144
1 Feb 2017
Matz J Lanting B Teeter M Howard J
Full Access

Introduction. Complications related to the patellofemoral joint continue to be a substantial source of patient morbidity, causing anterior knee pain, instability, and dysfunction following total knee arthroplasty. One of the principle factors affecting patellofemoral outcomes may be trochlear design. The optimal design is currently unknown. The purpose of the present study was to study patellofemoral joint contact by analysing areas of wear in retrieved femoral components of three modern designs. Materials and Methods. Eighteen retrieved femoral components featuring three different designs (constant radius of rotation, multiple radii of rotation, and multiple radii of rotation with built-in external rotation design) were matched on the basis of time-in-vivo, age, BMI and gender. All implants were cobalt chrome, posterior stabilized, cemented components with fixed bearing design with a resurfaced patella. Trochlear wear and surface damage were assessed using visual inspection, low-magnification light microscopy, and light profilometry. Results. Six implants from each group were successfully matched and were used for the topographical analysis. The femoral components were closely matched on the basis of time-in-vivo (TIV) (2.4 years±1.2), age (71.6 years±11.3), and BMI (33.0 kg/m. 2. ±7.0). There were 9 males and 9 females in the sample. Infection was the most common reason for revision (n=14) followed by instability (n=3) and loosening (n=1). There were no significant differences in TIV, age, and BMI between the groups (p=0.366, p=0.829, and p=0.586, respectively). When compared with unused, reference components, both the retrieved constant radius implants (p<0.05) and multiple radii implants (p<0.05) were significantly rougher than the new components. The retrieved components with multiple radii and built-in external rotation were not substantially rougher than the reference component (p>0.05). Visual inspection of the femoral components showed evidence of damage in all implant types. Modes of damage included scratches, striation, pitting, and delamination. No significant differences between the groups were found with respect to overall damage and wear on visual inspection (p=0.480). However, light profilometry analysis showed significantly increased roughness of multiple radii components compared to constant radius or multiple radii components with built-in external rotation (p<0.05). This was particularly significant in the proximal middle (p=0.045) and medial zones of the trochlea (p=0.017). Conclusions. All retrieved femoral components show evidence of damage in the trochlear area. While retrieved constant radius and multiple radii components showed increased wear compared to new components, retrieved components with multiple radii and built-in external rotation did not differ significantly from their new state. Retrieved multiple radii components appeared to have increased roughness compared with constant radius or multiple radii with built-in external rotation, particularly in the proximal zones of the trochlea. The long term effects of increased trochlear roughness requires further investigation and correlation with clinical outcomes. As the volume and patient demands for total knee arthroplasty increase, a greater understanding of the effect of trochlear design on clinical outcomes is warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 34 - 34
1 Feb 2016
Hamad C Bertrand F Jenny J Cross M Angibaud L Hohl N Dai Y
Full Access

Although total knee arthroplasty (TKA) is a largely successful procedure to treat end-stage knee osteoarthritis (OA), some studies have shown postoperative abnormal knee kinematics. Computer assisted orthopaedic surgery (CAOS) technology has been used to understand preoperative knee kinematics with an open joint (arthrotomy). However, limited information is available on the impact of arthrotomy on the knee kinematics. This study compared knee kinematics before and after arthrotomy to the native knee using a CAOS system. Kinematics of a healthy knee from a fresh frozen cadaver with presumably intact PCL were evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). At the beginning of the test, four metal hooks were inserted into the knee away from the joint line (one on each side of the proximal tibia and the distal femur) for the application of 50N compressive load to simulate natural knee joint. Prior to incision, one tracker was attached to each tibia and femur on the diaphysis. Intact knee kinematics were recorded using the CAOS system by performing passive range of motion 3 times. Next, a computer-assisted TKA procedure was initiated with acquisition of the anatomical landmarks. The system calculated the previously recorded kinematics within the coordinate system defined by the landmarks. The test was then repeated with closed arthrotomy, and again with open arthrotomy with patella maintained in the trochlea groove. The average femorotibial AP displacement and rotation, and HKA angle before and after knee arthrotomy were compared over the range of knee flexion. Statistical analysis (ANOVA) was performed on the data at ∼0° (5°), 30°, 60°, 90° and 120° flexion. The intact knee kinematics were found to be similar to the kinematics with closed and open arthrotomy. Differences between the three situations were found, in average, as less than 0.25° (±0.2) in HKA, 0.7mm (±0.4) in femorotibial AP displacement and 2.3° (±1.4) in femorotibial rotation. Although some statistically significant differences were found, especially in the rotation of the tibia for low and high knee flexion angles, the majority is less than 1°/mm, and therefore clinically irrelevant. This study suggested that open and closed arthrotomy do not significantly alter the kinematics compared to the native intact knee (low RMS). Maintaining the patella in the trochlea groove with an open arthrotomy allows accurate assessment of the intact knee kinematics


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 21 - 21
1 May 2016
Hamad C Jung A Jenny J Cross M Angibaud L Hohl N Dai Y
Full Access

Introduction. While total knee arthroplasty (TKA) improves postoperative function and relieves pain in the majority of patients with end stage osteoarthritis, its ability to restore normal knee kinematics is debated. Cadaveric studies using computer-assisted orthopaedic surgery (CAOS) system [1] are one of the most commonly used methods in the assessment of post-TKA knee kinematics. Commonly, these studies are performed with an open arthrotomy; which may impact the knee kinematics. The purpose of this cadaveric study was to compare the knee kinematics before and after (open or closed) arthrotomy. Materials and Methods. Kinematics of seven non-arthritic, fresh-frozen cadaveric knees (PCL presumably intact) was evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). Prior to the surgical incision, one tracker was attached to the diaphysis of each tibia and femur. Native intact knee kinematics was then assessed by performing passive range of motion (ROM) three separate times, from full extension to at least 110 degrees of flexion, with the CAOS system measuring and recording anatomical values, including flexion angle, internal-external (IE) rotation and anterior-posterior (AP) translation of the tibia relatively to the femur, and the hip-knee-ankle (HKA) angle. Next, an anterior incision with a medial parapatellar arthrotomy was performed, followed by acquisition of the anatomical landmarks used for establishing an anatomical coordinate system in which all the anatomical values were evaluated [2]. The passive ROM test was then repeated with closed and then open arthrotomy (patella manually maintained in the trochlea groove). The anatomical values before and after knee arthrotomy were compared over the range of knee flexion using the native knee values as the baseline. Results. Generally, kinematics from the native knee were found to be similar to those with closed and open arthrotomy. Deviations between native knee and arthrotomy groups (open or closed, whichever was the worst case) were 0.49±0.52mm for the AP translation, 0.44±0.41° for the HKA, and 0.86±0.8° for the IE rotation (Figures 1–3). The deviation from native knee kinematics was found to be higher with increased flexion angles in both HKA and AP translation. Closing the arthrotomy had minimal effect on knee kinematics, and no difference was seen in knee kinematics between an open and closed arthrotomy, so long as the patella is manually maintained within the trochlear groove. Discussion. This study demonstrated arthrotomy, whether open or closed, did not affect the tested knee kinematics compared to a native intact knee. The deviation found in the anatomical values was within the typical range of clinical variation. Increased deviation in high flexion for some anatomical values may be due to difficulty in reproducing consistent motion during ROM test. This study showed that an open arthrotomy with the patella maintained in the trochlea groove provides accurate assessment of the intact knee kinematics


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 61 - 61
1 May 2016
Jenny J Honecker S Diesinger Y
Full Access

INTRODUCTION. One of the main goals of total knee arthroplasty (TKA) is to restore an adequate range of motion. The posterior femoral offset (PFO) may have a significant influence on the final flexion angle after TKA. The purpose of the present study was to compare the conventional, radiologic measurement of the PFO before and after TKA to the intra-operative, navigated measurement of the antero-posterior femoral dimension before and after TKA implantation. MATERIAL. 100 consecutive cases referred for end-stage knee osteo-arthritis have been included. Inclusion criteria were the availability of pre-TKA and post-TKA lateral X-rays and a navigated TKA implantation. There was no exclusion criterion. METHODS. Pre-TKA and post-TKA digital lateral X-rays were performed with fluoroscopic control of the superposition of both femoral. The PFO was defined as the distance between the anterior femoral cortex and the most posterior point of the femoral condyles (figure 1). The TKA was implanted with help of a navigation system. The standard navigated procedure involves a navigated palpation of the anterior femoral cortex just proximal to the trochlea (figure 2) and a navigated palpation of the most posterior point of both femoral condyles (figure 3), allowing computation of the pre-TKA navigated PFO. The post-TKA PFO was calculated according to the the antero-posterior position of the prosthetic trochlea in comparison to the anterior femoral cortex and the size of the femoral implant. Pre-TKA and post-TKA radiologic and navigated measurements of the PFO were compared with a paired Student t-test and calculation of the coefficient of linear correlation. The coherence between the data was analyzed according to Bland-Altman. The radiologic and navigated PFO changes were compared with a paired Student t-test and calculation of the coefficient of linear correlation. The sample size was calculated to allow detecting a 3 mm difference at a 0.05 level of significance and a power of 0.90. All statistical tests were performed at a 0.05 level of significance. RESULTS. The mean paired difference between pre-TKA radiologic and navigated measurement was 3.8 mm ± 4.1 mm (range, −5.2 to 17.9 mm) (p<0.001). There was a significant moderate positive correlation between both measurements (R² = 0.41, p<0.001). There was a good coherence between both measurements (R² = 0.04). The mean paired difference between post-TKA radiologic and navigated measurement was 5.9 mm ± 4.8 mm (range, −24.0 to 16.9 mm) (p<0.001). There was a significant moderate positive correlation between both measurements (R² = 0.51, p<0.001). There was a poor coherence between both measurements (R² = 0.11). The mean paired radiologic PFO change was 1.5 mm ± 5.2 mm. The mean paired navigated PFO change was −0.9 mm ± 4.0 mm (range, −14.0 to 12.2 mm) (p<0.001). There was a significant weak positive correlation between both measurements (R² = 0.21, p<0.001). There was a good coherence between both measurements (R² = 0.002). DISCUSSION. We observed a significant difference between radiologic and navigated results. This difference is likely to be clinically significant. CONCLUSION. Radiological measurement of the femoral offset is not reliable either before or after TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 29 - 29
1 Sep 2012
Cobb J
Full Access

The current generation of knee replacements are based upon assumptions from kinematic studies that preceded their designs. These implants were further limited by practical restrictions imposed by affordability, materials and manufacturing, and finally by the methods available to surgeons to prepare the bone and implant them. The early designs of knee seldom distinguished left from right, as the early kinematic work had not appreciated the very different functions of the medial and lateral compartments. Trochlea shape and position within devices was also limited by the published work on the way the knee bends. Surgical insertion has been limited to landmark based registration, and adjustment of the kinematics by soft tissue releases. However accurately such operations were performed, they could not restore normal function, as the kinematics of the joint were quite different from the normal knee. Recently, we have begun to appreciate three distinct axes of the knee joint: the flexion axis, the extension axis and the trochlea axis. These can be reliably found from 3d imaging, but cannot be immediately established by eye, or by conventional jigs, which must rely on unreliable landmarks acquired in surgery. The current market leaders in knee joint sales do not reflect these three axes in their joint designs, so the instrumentation used to insert them cannot restore the kinematics of the normal knee. The emerging partial replacements can be designed to take the axes and their resulting kinematics into account. If they are then inserted using robotic assistance, or patient specific guides, they can restore joints to these axes reliably. Knee function following such conservative surgery reflects this improvement in kinematics with higher functional scores and faster top walking speeds than has ever been possible using conventional devices inserted using the conventional landmark based surgical techniques


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 20 - 20
1 Apr 2013
Sonanis SV Kumar S Deshmukh N Wray C Beard DJ
Full Access

Introduction. A prospective study was done using Kirschner (K) wires to internally fix capitellum fractures and its results were analysed. Materials/Methods. Since 1989, unstable displaced 17 capitellum fractures were anatomically reduced and internally fixed by inserting K wires in coronal plane from the capitellum into trochlea. The lateral end of wires were bent in form of a staple behind the fracture plane and anchored into the lateral humeral condyle with pre-drilled holes. Additional screws were used in 2 cases to stabilise the lateral pillar comminution. The capitellum was exposed with a limited modified lateral elbow approach between anconeus and extensor carpi ulnaris. The capsule was reflected anteriorly to expose the capitellum and trochlea. The deeper dissection was limited anterior to lateral collateral ligament (LCL) keeping it intact. The capitellum fragment was reposition under the radial head and anatomically reduced by full flexion of elbow and then internally fixed. Total 17 patients (7 males and 10 females) with average ages 34.8 years(14 to 75) had fractures, Type I: (Hans Steinthal #) 12, Type II: (Kocher Lorez #) 1, and Type III: (Broberg and Morrey #) 4. Post-operatively the patients were not given any immobilisation and were mobilised immediately. Results. Patients were assessed clinically and radiologically. Average followup was 31.7 (18–35) months. Capitellum fractures healed in all the patients. Mayo elbow score was excellent in 12, good in 4, and fair in 1 patient. Average elbow ROM was 5 to 132 degrees, pronation 84.5 (79–90) degrees and supination 88 (85–91) degrees. Complications seen were wire pain in 4 patients, loosening of wires in 2 which required early removal. We did not see any infection, non-union or avascular necrosis in the time scale we studied. Conclusions. We found a simple manoeuvre of hyper-flexion of elbow reduced the capitellum anatomically, and K wires stapling technique to be very easy and stable. A limited exposure of capitellum helped to restore immediate stable elbow with good function


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 27 - 27
1 Oct 2012
Strachan R Konala P Iranpour F Prime M Amirthanayagam T Amis A
Full Access

Anatomical referencing, component positioning, limb alignments and correction of mechanical axes are essential first steps in successful computer assisted navigation. However, apart from basic gap balancing and quantification of ranges of motion, routine navigation technique usually fails to use the full potential of the registered information. Enhanced dynamic assessment using an upgraded navigation system (Brainlab V. 2.2) is now capable of producing enhanced ‘range of motion’ analysis, ‘tracking curves’ and ‘contact point observations’. ‘Range of motion analysis’ was performed simultaneously for both tibio-femoral and patella-femoral joints. Other dynamic information including epicondylar axis motion, valgus and varus alignments, antero-posterior tibio-femoral shifts, as well as flexion and extension gaps were simultaneously stored as a series of ‘tracking curves’ throughout a full range of motion. Simultaneous tracking values for both tibiofemoral and patellofemoral motion was also obtained after performing registration of the prosthetic trochlea. However, there seems to be little point in carrying out such observations without fully assessing joint stability by applying controlled force to the prosthetic joint. Therefore, in order to fully assess ‘potential envelopes of motion’, observations have been made using a set of standardised simple dynamic tests during insertion and after final positioning of trial components. Also, such tests have been carried out before and after any necessary ligament balancing. Firstly, the lower leg was placed in neutral alignment and the knee put through a flexion-extension cycle. Secondly the test was repeated but with the lower leg being placed into varus and internal rotation. The third test was performed with the lower leg in valgus and external rotation. Force applied was up to the point where resistance occurred without any gross elastic deformation of capsule or ligament in a manner typical of any surgeon assessing the stability of the construct. Also a passive technique of using gravity to ‘Drop-Test’ the limb into flexion and extension gave useful information regarding potential problems such as blocks to extension, over-stuffing of the extensor mechanism and tightness of the flexion gap. All the definitive tests were performed after temporary medial capsular closure. Ten total knee arthroplasties have been studied using this technique with particular reference to the patterns of instability found before, during and after adjustments to component positioning and ligament balancing. Marked intra-operative variation in the stability characteristics of the trial implanted joints has been quantified before correction. These corrections have been analysed in terms of change in translations, rotations and contact points induced by any such adjustments to components and ligament. Certain major typical patterns of instability have begun to be identified including excessive rotational and translational movements. Instability to valgus and external rotational stress was found in two cases and to varus and internal rotational stress in one case before correction. In particular, surprising amounts of edge loading in mid-flexion under stress testing has been identified and corrective measures carried out. Reductions in paradoxical tibio-femoral antero-posterior motion were also observed. Global instability and conversely tightness were also observed in early stages of surgery. Adjustments to component sizes, rotations, tibial slope angles and insert thickness were found to be necessary to optimise range of motion and stability characterisitics on an almost case-by-case basis. Two cases were identified where use of more congruent or stabilised components was necessary. Observation of quite marked loss of contact between tibia and femur was seen on the lateral side of the knee in deep flexion in several cases. Patellar tracking was also being observed during such dynamic tests and in two cases staged partial lateral retinacular releases were carried out to centre patellar tracking on the prosthetic trochlea. Although numbers in this case series are small, it has been possible to begin to observe, classify and quantify patterns of instability intra-operatively using simple stress tests. Such enhanced intra-operative information may in future make it possible to create algorithms for logical and precise adjustments to ligaments and components in order to optimise range of motion, contact areas and stability in TKR