Advertisement for orthosearch.org.uk
Results 1 - 20 of 162
Results per page:
Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 435 - 436
1 Apr 2004
Matsuda S Miura H Nagamine R Urabe K Mawatari T Iwamoto Y
Full Access

Introduction: Correct rotational alignment of the femoral component is an important factor for successful total knee arthroplasty. This study evaluated relationship between the transepicondylar axis and the posterior condylar axis in normal, varus, and valgus knees. Methods: Thirty normal knees (mean age: 66.2 years), 30 osteoarthritic knees with varus deformity (67.9 years), and 25 osteoarthritic knees with valgus deformity (70.7 years) were evaluated using magnetic resonance imaging. Femo-rotibial angle on standing anteroposterior radiograph was 185° in the varus knees and 166.1° in the valgus knees. In the transverse view, the angle between the transepicondylar axis and the posterior condylar axis, and the angle between the line perpendicular to the anteroposterior (AP) axis and the posterior condylar axis were measured in each group. Results: Transepicondylar line showed 6.4° of external rotation in the normal knees and 6.1 of external rotation in the varus knees relative to the posterior condylar axis. However, transepicondylar axis of the valgus knee showed 11.6° of external rotation. This angle was significantly larger than that of normal knee and varus knee (p < 0.05). The line perpendicular to the AP axis was externally rotated from the posterior condylar axis in 6.3° in the normal knees, 6.6° in the varus knees, and 8.8° in the valgus knees. The external rotational angle in the valgus knees was significantly larger than that of the normal and varus knees (p < 0.05). Discussion and conclusion: These results suggest that there is no hypoplasia of the posterior part of the medial condyle in varus knees, however, posterior part of the lateral condyle in valgus knee is severely distorted. Based on the results of this study, 3 to 5 degrees of external rotation relative to the posterior condyles is not large enough to achieve correct rotational alignment for valgus knees


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 332 - 332
1 Dec 2013
Shaetty S Kumar A Gupta S
Full Access

Purpose. To validate accuracy of transepicondylar axis as a reference for femoral component rotation in primary total knee arthroplasty. Methods. A prospective study done from dec 2010 to dec 2011 at tertiary centre. 80 knees were included (43 females and 21 males). All surgeries were carried out by one senior arthroplasty surgeon. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view. Postoperative TEA was assessed by taking CT scan, measuring condylar twist angle and posterior condylar angle. Also correlation of femoral component rotation with postoperative anterior knee pain was assessed. Results. The mean PCA was around 4° with TEA as reference and only 10% patients required an additional lateral release of which 2% patient had preop patellar maltracking. No postoperative patellar maltracking was seen. Anterior knee pain was present in 8% patients. No postop infection is noted. Alignment ranging from 3° to 9° external rotation. Conclusion. TEA is most accurate reference for femoral component rotation even in severely deformed arthritic knees. Key words – Transepicondylar axis, total knee arthroplasty, femoral component rotation,


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 4 - 4
1 Sep 2012
Oussedik S Scholes C Leo S Ferguson D Roe J Parker D
Full Access

Computer navigation has been shown to improve the accuracy of total knee replacement (TKR) when compared to intra or extra osseous referencing. Currently the surgical transepicondylar axis (TEA) is used to help determine femoral component rotation. This relies on the surgeon identifying medial and lateral epicondyles intra-operatively. This process has been shown to have a high variability and operator dependency. The functional flexion axis (FFA) of the femur is a kinematically derived reference axis which has previously been shown in a cadaveric model to correspond well with the transepicondylar axis. This study was therefore designed to evaluate its accuracy in vivo. 50 patients undergoing total knee replacement under the care of the three senior authors were prospectively recruited. A preoperative CT scan was obtained and the TEA evaluated by 2 independent clinicians. TKR was undertaken in the standard fashion using Stryker navigation. The FFA was derived at 3 time points during the procedure: pre-incision, post osseous registration and following component implantation. The deviations of the FFA and surgical TEA (surTEA) to the CT-derived TEA (ctTEA) was calculated and comparisons drawn between the 2 methods with respect to validity, as well as within and between-patient reproducibility. While the FFA results were highly correlated between pre and post-arthrotomy (r = 0.89), the post-incision FFA (−1.60+/−3.7) was significantly internally rotated (p<0.01) relative to the pre-incision FFA (−2.50+/−3.4). In addition the surgical TEA (−0.40+/−3.6) was significantly internally rotated (p = 0.02) relative to the post-incision FFA (1.80+/−3.7) for the combined data from all 2 surgeons. However, when examined individually, 1 of the 2 surgeons showed no significant difference between the FFA and TEA. In addition, the two methods demonstrated comparable between-patient variability in the knee axis, although surgeon-dependent patterns remained. The FFA has been shown to be of equivalent accuracy to the surgical TEA but surprisingly does not avoid its operator-dependency. Further evaluation of the FFA method with possible adjustments to the algorithm is warranted


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 32 - 32
1 Jan 2004
Bonnin M Carillon Y
Full Access

Purpose: The transepicondylar axis (TECA) is an important landmark for positioning the femoral component in correct the rotation during total knee arthroplasty. In vivo studies have shown that the TECA corresponds to the flexion-extension axis of the knee joint. Two TECA have been defined in the literature depending on the landmark used for the medial epicondyle: the eminence for the “clinical” TECA and the depression for the “surgical” TECA. The purpose of the present study was to investigate in vivo the relations between the TECA and the mechanical axis of the femur (FA) and the tibia (TA) measured on computed tomography (CT) scans of the flexed knee, analysing separately the two TECAs. Material and methods: CT scans of the right knees of ten volunteers were studied. Goniometric data was acquired on the scans. Five controls with genu varum and five with genu valgum were also studied. Images were acquired at 0°, 45° and 90° flexion. The epicondyles were identified on the horizontal sections and three frontal sections parallel to the posterior cortical of the tibia were reconstructed. Superoposition of these three sections, for each flexion angle, gave a frontal section with TECA-clin, TECAsurg, TA, and the posterior bicondylar line (PBL). The angles between TECA and TA, FA and PBL were analysed during flexion. Angles were measured by the medial side. Results: TECAsurg remained perpendicular to the TA throughout flexion but with considerable interindividual variability. The mean variation during flexion was 3.4±1.5°. The FA-TECA angle was 88.5±0/8° and did not vary with morphotype. The TECA/PBL and TECA/TA angles varied with morphotype but less with flexion. Conclusion: The surgical TECA maintains constant relations with the tibial axis during knee flexion. It can thus be used as a landmark for positioning the femoral component for total knee arthroplasty in order to optimise femorotibial kinematics. The relations between the clinical TECA and the TA are variable and preoperative identification on the main medial epicondylar eminence may give variable results


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 103 - 103
1 Sep 2012
Colle F Bignozzi S Lopomo N Zaffagnini S Marcacci M
Full Access

Introduction. Several in vitro and in vivo studies have found correspondence between transepicondylar axis (TEA) and functional flexion axis (FFA) in healthy subjects. In addition some studies suggest that the use of FFA for rotational alignment of femoral implant may be more accurate than TEA. Ostheoarthritis (OA) may modify limb alignment and therefore flexion axis, introducing a bias at different flexion ranges during kinematic acquisition. In this study we want to understand whether OA affects somehow the FFA evaluation compared to TEA and whether the FFA could be considered a usable reference for implant positioning for osteoarthritic knees. Methods. We included a group of 111 patients undergoing TKA. With a navigation system, we recorded intraoperative kinematic data in three different ranges of motion (0°-120°; 35°-80°; 35°-120°). We compared the difference in orientation of FFA (computed with the mean helical axis method) in the three ranges as also the difference with the TEA on frontal and axial planes. The correlation of preoperative limb deformity with FFA and TEA was also performed. Results. In OA patients an average difference of −2.8° ± 5.0° between TEA and FFA was found on frontal plane, while on axial plane results showed a difference of 0.6° ± 4.7°. No statistical difference was found among the three ranges in axial view whereas some difference was found in frontal view (p<0.0001). Angle between TEA and FFA was not correlated with limb alignment on axial plane, while it was, even if poor, in frontal plane. Conclusions. In pathological knees there is the same correspondence between TEA and FFA both in frontal and axial plane and preoperative limb alignment does not correlate with orientation of FFA and TEA. Results are in agreement to studies on healthy subjects. FFA can be used as reference for femoral implant positioning in axial plane also in pathologic knees, while for the frontal plane further investigations are required


Purpose:. To compare accuracy of transepicondylar axis as a reference for femoral component rotation in primary navigated versus non navigated total knee arthroplasty in severely deformed knees. Methods:. A prospective study done from dec 2009 to dec 2011 at tertiary centre. 180 knees were included (124 females and 56 males). All cases were randomly allocated into 2 groups: navigated and non navigated. All surgeries were carried out by two senior arthroplasty surgeons. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view in Non navigated knees. Postoperative TEA was assessed by taking CT scan, measuring condylar twist angle and posterior condylar angle (PCA). Results:. The mean PCA was around 4° with TEA as reference in Navigated and 6° in Non navigated knees and only 7% patients required an additional lateral release of which 2% patient had preop patellar maltracking. No postoperative patellar maltracking was seen. Anterior knee pain was present in 10% patients. No postop infection is noted. Alignment ranging from 4° to 8° external rotation. Conclusion:. Navigation is most accurate measure for TEA as reference, as compared to non navigated TKA, which can lead to excessive external rotation especially in severely deformed knees


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 124 - 124
1 Feb 2017
Li G Dimitriou D Tsai T Park K Kwon Y Freiberg A Rubash H
Full Access

Introduction. An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA). Methods. Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their MR images. Dual fluoroscopic images of each knee were acquired during a weight-bearing single leg lunge. The OA knee was imaged again one year after surgery using the fluoroscopy during the same weight-bearing single leg lunge. The in vivo positions of the knee along the flexion path were determined using a 2D/3D matching technique. The GCA and sTEA were determined based on existing methods. Besides the anterior-posterior translation, the femoral condyle heights were determined using the distances from the medial and lateral epicondyle centers on the sTEA and GCA to the tibial plateau surface in coronal plane (Fig. 1). The paired t-test was applied to compare the medial and lateral condyle motion within each group (Healthy, OA, and CR-TKA). Two-way ANOVA followed post hoc Newman–Keuls test was adopted to detect significant differences among the groups. p<0.05 was considered significant. Results. The results demonstrated that following TKA, the medial and lateral femoral condyle heights were not equal at mid-flexion (15° to 45°, medial condyle lower then lateral by 2.4mm at least, p<0.01), although the knees were well-balanced at 0° and 90° (Fig. 2). While the femoral condyle heights increased from the pre-operative values (>2mm increase on average, p<0.05), they were similar to the intact knees except that the medial sTEA was lower than the intact medial condyle between 0 and 90°. At deep flexion (>90°), both condyles were significantly higher (>2mm, p <0.01) than the healthy knees. Anterior femoral translation of the TKA knee was more pronounce at mid-flexion (Fig. 3), whereas limited posterior translation was found at deep flexion. Conclusion. Femoral condyle heights and AP translations of the CR TKA knees were significantly different from the healthy knees during the weight bearing flexion activity when measured using both the sTEA and GCA, especially at mid-flexion (15° to 45°) and deep flexion (>90°). These results suggest that a well-balanced knee intra-operatively might not necessarily result in mid-flexion and deep flexion balance during functional weight-bearing motion, implying mid-flexion instability and deep flexion tightness of the knee. The data could be useful for improvement of future prostheses designs and surgical techniques in treatment of patients with end-stage medial knee OA


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims. This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). Methods. This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA. Results. The value of GTVA was 20.9° (SD 4.7°) (95% CI 20.47° to 21.3°). Results of analysis of variance revealed that females had a statistically significant larger angle of 21.95° (SD 4.49°) compared to males, which were found to be 20.49° (SD 4.8°) (p = 0.001). Conclusion. This study identified a consistent relationship between palpable anatomical landmarks, enhancing IMN accuracy by utilizing 3D CT scans and replicating a 20.9° angle from the greater tuberosity to the transepicondylar axis. Using this angle as a secondary reference may help mitigate the complications associated with malrotation of the humerus following IMN. However, future trials are needed for clinical validation. Cite this article: Bone Jt Open 2024;5(10):929–936


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 520 - 526
1 Apr 2008
Yau WP Leung A Liu KG Yan CH Wong LS Chiu KY

We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT. The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation, . sd. 4) than in the conventional approach (3° of internal rotation, . sd. 4; p < 0.001). The errors in identifying the anteroposterior axis in the two approaches were 0° (. sd. 5) and 1.8° (. sd. 5) of internal rotation, respectively (p < 0.001)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 87 - 87
1 May 2016
Saied F Patel R Ismaily S Harrington M Landon G Parsley B Noble P
Full Access

Summary. There is tremendous variability amongst surgeons' ability to reference anatomic landmarks. This may suggest the necessity of other objective methods in determining femoral alignment and rotation. Introduction. Despite the durability of total knee arthroplasty, there is much room for improvement with regards to functional outcome and patient satisfaction. One important factor contributing to poor outcomes after TKA is malrotation of the femoral component. It has been postulated that this is due to failure of surgeons to correctly reference bony landmarks, principally the femoral epicondyles, however, this is unproven. The purpose of this study was to evaluate the accuracy of joint surgeons and trainees in identifying anatomic landmarks for positioning the femoral component and to determine the effect of prior training and experience. Methods. 23 surgeons (17 attending surgeons, 6 trainees) participated in this study. Using custom-made computer software, each surgeon interactively defined the epicondylar axis (EA), the anterior-posterior axis (AP) of the distal cut (Whiteside's Line) on 3D computer models of 10 normal femora reconstructed from CT scans. Each surgeon then aligned a standard distal cutting guide on the resected distal surface of each femoral model. A standardized procedure was employed to determine the true location of the epicondyles, the direction of Whiteside's Line and the orientation of the cutting guide. Each participant was surveyed to ascertain their extent of formal training in joint arthroplasty, their annual volume of TKA cases, and whether they routinely aligned their TKAs using Whiteside's and the transepicondylar axis. The difference between the ideal and surgeon-selected parameters were calculated and correlated with data describing each surgeon's training and experience. Results. Landmark selection and guide placement was highly variable between surgeons. Overall, surgeons placed Whiteside's line in 1.83°± 7.01° of internal rotation vs. the calculated axes. Additionally, surgeons placed the transepicondylar axis in 1.40°± 3.72° of internal rotation vs. the calculated axes. On average, the guide was placed in 1.44°± 2.59° of additional internal rotation in comparison to the selected transepicondylar axis. Surgeons who routinely utilized the transepicondylar axis intraoperatively placed the guide significantly closer to the selected transepicondylar axis than those who did not (0.74°± 1.28° vs. 1.85°± 3.05°, p=.0024). Surprisingly, fellowship training, years of training, and volume of cases per year had no statistical effect the outcome of placement. Conclusion. This study suggests that there is tremendous variability amongst surgeons' ability to accurately reference the femoral epicondyles, Whiteside's line, and the transepicondylar axis. Our results also indicate that surgeons are not able to identify Whiteside's line with sufficient reliability for it to be a dependable indicator of correct component alignment in TKA. Our data also support the use of other methods to reliably determine correct rotational alignment of the femoral component in total knee arthroplasty


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 332 - 332
1 May 2006
Melendo E Hinarejos P Montserrat F Puig L Marín M Cáceres E
Full Access

Introduction: Defects in rotational alignment of the femoral component in total knee replacements (TKR) may cause poor alignment of the extensor apparatus. There are numerous references concerning the correct alignment of the femoral component of a prosthesis: transepicondylar axis, anteroposterior axis, and posterior condylar axis. Materials and methods: Computer-assisted measurement of the relative differences between the transepicondylar axis, anteroposterior axis and posterior condylar axis in 38 TKR patients, excluding those with varus or valgus deformity greater than 15 degrees. Results: The difference between the anteroposterior axis and the transepicondylar axis was 3.13 degrees of external rotation in the former. Between the posterior condylar axis and the transepicondylar axis it was 1.18 degrees of internal rotation in the former. Between the anteroposterior axis and the posterior condylar axis it was 5.51 degrees of external rotation of the former. Conclusions: Probably the transepicondylar axis is the best landmark to enable reproducing the biomechanics of the knee in a patient bearing a prosthesis, although it is often difficult to reproduce it precisely. Several studies have noted errors among observers that are too great to make us feel certain that we are doing the best thing. Although it is accepted that the perpendicular to the anteroposterior axis is reliable and corresponds to 4° of external rotation in relation to the posterior condylar axis, we have observed significant differences from one patient to another. It would seem preferable to use a combination of the different axes, which we can do with a surgical browser


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 326 - 326
1 May 2010
Mohanlal P Lower S Jain S
Full Access

Introduction:: Various reference axes are used in total knee arthroplasty to determine the femoral rotation including transepicondylar axis, posterior condylar axis and Whiteside’s line. However, there are currently no golden standards as to the ideal axes to determine the true femoral rotation. Materials and Methods: A prospective observational study was performed to analyse the various axes used to determine femoral rotation during total knee replacement. All consecutive patients who underwent MRI of the knee between December 2006 and May 2007 were considered to be included in the study. Patients below the age of 20 years, above the age of 40 years and mass lesions obscuring the bony landmarks were excluded. The transepicondylar, posterior condylar, posterior femoral cortical, anterior femoral cortical and tibial anteroposterior axes were measured on the PACS system. Results: Of the 100 patients, there were 75 males and 25 females with a mean age of 31(20–39) years. The mean relation between the posterior condylar axes and transepicondylar axes was 3.9 (SD−1.71, 95% CI 3.58–4.26), posterior condylar axes and posterior femoral cortical axes was 5.85 (SD−2.76, CI 5.3–6.4), posterior condylar axis and anterior cortical axis was 6.21 (SD−3.09, CI 5.6–6.8) and posterior condylar axes and tibial anteroposterior axes was 89.6 (SD−5.18, CI 88.5–90.6). Conclusion: The transepicondylar axis appears to be the most consistent amongst the landmarks used to determine femoral rotation. However even the transepicondylar axis shows a significant variation. If transepicondylar axis is not available we suggest the use of femoral anterior cortical axes as a reference landmark


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 24 - 24
1 Jan 2016
Hamada D Mikami H Toki S Wada K Goto T Sairyo K
Full Access

Objective. Rotational malalignment of the femoral component still causes patellofemoral complications that result in failures in total knee arthroplasty (TKA). To achieve correct rotational alignment, a couple of anatomical landmarks have been proposed. Theoretically, transepicondylar axis has been demonstrated as a reliable rotational reference line, however, intraoperative identification of the transepicondylar axis is challenging in some cases. Therefore, surgeons usually estimate the transepicondylar axis from posterior condylar axis (PCA) using twist angle determined by the preoperative X-rays and CT. While PCA is the most apparent landmark, radiographs are not able to detect posterior condylar cartilage. In most osteoarthritic knees, the cartilage thickness of the posterior condyle is different between medial and lateral condyles. The purpose of this study is to evaluate the effect of the posterior condylar cartilage on rotational alignment of the femoral component in large number of arthritic patients. Furthermore, we investigated whether the effect of posterior condylar cartilage is different between osteoarthritis (OA) and rheumatoid arthritis (RA). Methods. Ninety-nine OA knees and 36 RA knees were included. Detailed information is summarized in Table 1. All cases underwent TKA using navigation system. The institutional review board approved the study protocol and informed consent was obtained from each participants. To evaluate the effect of posterior condylar cartilage, we measured two different condylar twist angle (CTA) using navigation system and intraoperative fluoroscopy-based multi-planner reconstruction (MPR) images obtained by a mobile C-arm. To uniform the SEA in two different measuring systems, we temporary inserted a suture anchors in medial and lateral prominence. The CTA that does not include the posterior condylar cartilage (MPR CTA) is evaluated on MPR images and the CTA that does include the posterior condylar cartilage (Navi. CTA) is calculated by navigation system. The difference between these two angles corresponds to the effect of posterior condylar cartilage on the rotation of the femoral component (Fig. 1). The paired or unpaired t test was used to compare the obtained data. The statistics were performed using GraphPad Prism 6. A P value of 0.05 or less is considered as a significant difference. Results. The average MPR CTA in OA patients is 6.7 ± 2.1°, while the average MPR CTA in RA patients is 7.1 ± 2.0° (Fig 2A). On the other hand, the average Navi. CTA is 4.9 ± 2.1°, while the average Navi. CTA is 6.0 ± 2.1° (Fig. 2B). The difference of these two angles that corresponds to the cartilage remnant is 1.8 ± 1.4° in OA group and 1.1 ± 1.0° in RA groups. When we compared these angles between OA and RA population, the MPR CT – Navi CT was smaller in OA population than that of RA population (p < 0.05) (Fig. 2C). Conclusion. These results has demonstrated that twist angle measured on the X-rays or CT that does not include the cartilage would be overestimated compared to the true twist angle that includes cartilage in osteoarthritic knee. The effect of posterior condylar cartilage has less impact on femoral rotation in RA population


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 536 - 536
1 Sep 2012
Park IS Jung KA Ong A Hwang SH Nam CH Lee DW
Full Access

Background. Adequate rotation of femoral component in total knee arthroplasty(TKR) is mandatory for preventing numerous adverse sequelae. The transepicondylar axis has been a well-accepted reference for femoral component rotation in the measured resection technique. In this technique, measured resection is performed referenced off the tibial cut - perpendicular to the tibial mechanical axis with the knee in 90 ° of flexion. However, to the best of our knowledge, it is not known whether this technique apply well to a knee with tibia vara. This study evaluates the reliability of the transepicondylar axis as a rotational landmark in knees with tibia vara. Methods. We selected 101 osteoarthritis knees in 84 symptomatic patients(mean age: 69.24 ± 5.68) with proximal tibia vara (Group A). Group A was compared with 150 osteoarthritic knees without tibia vara in 122 symptomatic patients (mean age: 69.51 ± 6.01) (Group B). The guide line for selection of all these knees were based on the degree of tibia vara angle (TVA) which was formed by line perpendicular to epiphysis and by anatomical axis of the tibia - all measured in radiographs of the entire lower limb. Magnetic resonance imaging (MRI) axial images with most prominent part of both femoral condyles were used for measurement of transepicondylar axis(TE), anteroposterior axis(AP) and posterior condylar axis(PC). Results. The mean TVA of group A was 8.94° ± 3.11 and group B was 1.24° ± 0.85. The TE line in Group A showed 6.09 ° ± 1.43 of external rotation, relative to PC. This did not show statistical difference compared with 5.95 ° ± 1.58 in Group B (p=0.4717). The AP line in Group A showed 6.06 ° ± 1.93 of external rotation, relative to the line perpendicular to PC. This was statistically significant when compared to 5.44 ° ± 2.13 in Group B (p=0.020). Conclusion. There is no difference between knees without tibia vara compared those with tibia vara with regards to transepicondylar axis. In addition, both groups have almost identical external rotation of approximately 6 °. The AP axis was only approximately 0.5 ° difference between the two groups. The distal femoral geometry was not affected by tibia vara deformity, that is, there were no hypoplastic or hyperplastic deformities of medial femoral condyle in osteoarthritic knees with tibia vara. The use of transepicondylar axes in determining femoral rotation may produce flexion asymmetry in knees with proximal tibia vara. So, It should be pointed out that more attention should be paid on femoral component rotation and flexion gap balancing in knees with proximal tibial vara


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 22 - 22
1 Sep 2012
Boisrenoult P Berhouet J Beaufils P Frasca D Pujol N
Full Access

Introduction. Proper rotational alignment of the tibial component in total knee arthroplasty (TKA) could be achieved using several techniques. The self adjustment methodology allows the alignment of the tibial component under the femoral component after several flexion-extension movements. Our hypothesis was that this technique allowed a posterior tibial component alignment parallel to the femoral component posterior bicondylar axis. The aim of this study was to access this hypothesis using a post-operative CT-scan study. Materials and Methods. This prospective CT-scan study involved 94 TKA. Theses TKA were divided in two groups: group1: 50 knees with a pre-operative genu varum deformity (mean HKA: 172.2°), operated using a medial parapatellar approach, and group 2: 44 knees with a preoperative valgus deformity (mean HKA: 188.7°), operated using a lateral parapatellar approach. Four measures were done on each post-operative CT-scan: angle between anatomical transepicondylar axis and femoral component posterior bicondylar axis (FCPCA), angle between FCPCA and tibial component marginal posterior axis, angle between tibial component marginal posterior axis and bony tibial plateau marginal posterior axis (BTPMPA), angle between transepicondylar axis and tibial component marginal posterior axis. Each measure was repeated, after one month by the same independent observer. Statistical evaluation used non-parametric Wilcoxon–Mann–Whitney test to compare each group of measures, and intraobserver reproducibility was assessed using ANOVA test, with an error rate of 5%. Results. Intraobserver measurements were reproducible. Mean FCPCA was to 3,1° (SD:1,91) in group 1 and 4,7° (DS: 2,96) in group 2. Tibial component was positioned in external rotation in both groups, in relation to FCPCA: (group 1: mean angle: 0,7° (SD:4,45), group 2: mean angle: 0,9° (SD:4,53)) and in relation to BTPMPA: (group1: mean angle: 6,1° (SD: 5,85); group2: mean angle: 12,5° (SD: 8,6)). There was no statistical difference between these two groups. Tibial component was positioned in internal rotation in relation to anatomical transepicondylar axis: (Group1: mean angle: 1,9° (SD: 4,93); group 2: mean angle: 3° (SD: 4.38)). Discussion. By using the self adjustment technique, tibial component is aligned parallel to the femoral component regardless of the initial frontal deformity and the surgical approach. However, there was a difference in tibial component axis and BTPMPA, between the two groups. This difference should be explained by the difference in morphology of the tibial plateau bone in knee with genu valgum deformity. The self adjustment technique is a reliable method to obtain a proper rotational alignment of the tibial component in TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 36 - 36
1 Sep 2012
Jacofsky D D'Alessio J Patel A Kester M
Full Access

INTRODUCTION. Recent studies indicated that the knee has a single flexion/extension axis but debated the location of this axis. The relationship of the flexion/extension axis in the coronal plane to the mechanical axis has received little attention. The purpose of this study was to investigate the relationship of the various axes and references with respect to the mechanical axis in the coronal plane. MATERIALS AND METHODS. Subjects were prospectively scanned into a Virtual Bone Database (Stryker Orthopaedics, Mahwah, NJ). Database is a collection of body CT scans from subjects collected globally. Only CT Scans that met the following qualifications were accepted: ≤1 mm voxels and had slice thickness that was equal to the spacing between the slices (≤ 1.0mm). For each CT Scan, a frontal plane was created through the 2 most posterior points of the medial/lateral condyles and the most posterior point of the trochanter. Then, a transverse plane was created perpendicular to the frontal plane and bisects the 2 most distal points on the medial/lateral condyles. Finally, a saggital plane was created that was perpendicular to the frontal and transversal planes. The following axes were identified: Mechanical Axis of the Femur (MAF) (line between the center of the femoral head and the center of the knee sulcus); Transepicondylar Axis Posterior Cylindrical Axis (PCA) (line between the Medial/Lateral Condylar Circle – best fit circle to three points identified on surface). Measurements made: Angle of MAF and the Joint-Line (Femoral Joint Angle), Angle of the MAF and the Transepicondylar Axis (Femoral TE Angle), and Angle of the MAF and the Posterior Cylindrical Axis (Femoral PC angle). Angles measuring 90° were neutral or perpendicular to the MAF. Angles measured <90° were valgus and >90° were varus. RESULTS. CT Scans from 519 knees were studied. The mean femoral joint angle was 86.1°±2.0°(Range:80.2°-92.2°). The mean TE angle was 88.8°±2.5°(Range:81.7°-98.4°). The mean Femoral PC angle was 87.9°±2.2°(Range:81.8°-94.0°). The average deviations from a neutral resection were 3.8°, 1.2° and 2.1° for the Femoral Joint Angle, Femoral TE Angle respectively. The mean Femoral Joint angle had the lowest variability, while the mean Femoral TE angle showed the largest. CONCLUSION. On average, the transepicondylar axis and the posterior cylindrical axis were approximately perpendicular to the mechanical axis in the coronal plane. Although surgeons do not align components in the coronal plane specifically to either axis, this data suggests that the average value is within the accepted ±3° range reported. The PCA values are closer to the values of the femoral joint line when compared to the TEA. The PCA may be a more reproducible landmark as it may be determined by either preoperative imaging or intraoperatively from instrumentation that references the distal/posterior surfaces. Further research is warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 57 - 57
1 May 2016
Bruni D Iacono F Bignozzi S Marcacci M
Full Access

The main purpose of the present study is to prospectively investigate whether preoperative functional flexion axis in patients with osteoarthritisand varus-alignment changes after total knee arthroplasty and whether a correlation exists both between preoperative functional flexion axis and native limb deformity. A navigated total knee arthroplasty was performed in 108 patients using a specific software to acquire passive joint kinematics before and after implant positioning. The knee was cycled through three passive range of motions, from 0 to 120. Functional flexion axis was computed using the mean helical axis algorithm. The angle between the functional flexion axis and the surgical transepicondylar axis was determined on frontal (aF) and axial (aA) plane. The pre- and postoperative hip-kneeankle angle, related to femur mechanical axis, was determined. Postoperative functional flexion axis was different from preoperative only on frontal plane, while no differences were found on axial plane. No correlation was found between preoperative aA and native limb deformity, while a poor correlation was found in frontal plane, between aF and preoperative hip-knee-ankle angle. Total knee arthroplasty affects functional flexion axis only on frontal plane while has no effect on axial plane. Preoperative functional flexion axis is in a more varus position respect to the transepicondylar axis both in pre- and postoperative conditions. Moreover, the position of the functional axis on frontal plane in preoperative conditions is dependent on native limb alignment, while on axial plane is not dependent on the amount of preoperative varus deformity


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 23 - 23
1 Oct 2018
Wright TM Elmasry S Sculco PK Cross MB Westrich GH Imhauser CW Mayman DJ
Full Access

Introduction. Whether anterior referencing (AR) or posterior referencing (PR) are optimal to position and size the femoral component in Total Knee Arthroplasty (TKA) remains controversial. This controversy stems, in part, from a lack of understanding of whether one technique more consistently balances the medial/lateral collateral ligaments (MCL & LCL) in flexion and extension. Therefore, our goal was to compare AR and PR in terms of: (1) maximum MCL and LCL forces in passive flexion, and (2) medial and lateral gaps at full extension and 90‖ of flexion. In addition, we identified geometric landmarks that could help predict the ligament forces during flexion. Methods. Computational models of six knees were virtually implanted with TKAs based on our previously-developed framework. AR and PR were simulated in each of the six models. A Posterior Stabilized implant was utilized. Standard AR and PR cuts and component positioning were simulated with the femoral component aligned parallel to the transepicondylar axis. In both AR and PR models, the distal femoral cut and the proximal tibial cut were perpendicular to the femoral and tibial mechanical axis, respectively. The amount of posterior bone resected with AR knees ranged from 4.2 to 10.8 mm, and with PR knees ranged from 4.2 to 8 mm. Ligament properties were standardized to reflect a balanced knee at full extension. Passive flexion under 500 N of compression was applied and the MCL and LCL forces were predicted. A new measure, the MCL ratio, that incorporated the femoral insertion of the anterior fiber of MCL relative to the posterior and distal femoral cuts was estimated (Fig. 1). A varus/valgus moment of 6 Nm was applied at full extension and 90‖ of flexion, and the corresponding lateral and medial gaps were measured. Results. In passive flexion, the maximum MCL force ranged from 2 to 87 N in AR and from 17 to 127 N in PR (Fig. 2). The LCL forces decreased to zero before 25‖ of flexion in all knees. The MCL ratio corresponded to the MCL force; the larger the MCL ratio, the larger was the maximum MCL force (Fig. 2). At full extension, AR and PR knees were balanced with a maximum difference in medial-lateral gap < 1 mm. However, in flexion, only two out of the six AR and PR knees produced a difference in medial-lateral gap < 2 mm. Conclusion. Neither AR nor PR consistently produced higher or lower maximum MCL force in flexion despite being well balanced in extension and aligned with the transepicondylar axis. Rather, the more the posterior bone resection, independent of AR or PR, the less was the maximum MCL force in flexion. Knees that produced symmetrical gaps at full extension and 90° of flexion were the ones with the lowest maximum MCL force. Therefore, our findings suggest that less MCL force in flexion promotes a more balanced knee. The MCL ratio corresponded to the variations in maximum MCL force in flexion; it may be used to help produce a more well-balanced knee joint. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 84 - 84
1 Jun 2018
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the transepicondylar axis. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of post-operative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1039 - 1044
1 Aug 2008
Lützner J Krummenauer F Wolf C Günther K Kirschner S

After obtaining informed consent, 80 patients were randomised to undergo a navigated or conventional total knee replacement. All received a cemented, unconstrained, cruciate-retaining implant with a rotating platform. Full-length standing and lateral radiographs and CT scans of the hip, knee and ankle joint were carried out five to seven days after operation. No notable differences were found between computer-assisted navigation and conventional implantation techniques as regards the rotational alignment of the femoral or tibial components. Although the deviation from the transepicondylar axis was relatively low, there was a considerable range of deviation for the tibial rotational alignment. There was no statistically significant difference regarding the occurrence pattern of outliers in mechanical malalignment but the number of outliers was reduced in the navigated group