Introduction: Correct rotational alignment of the femoral component is an important factor for successful total knee arthroplasty. This study evaluated relationship between the
Purpose. To validate accuracy of
Computer navigation has been shown to improve the accuracy of total knee replacement (TKR) when compared to intra or extra osseous referencing. Currently the surgical
Purpose: The
Introduction. Several in vitro and in vivo studies have found correspondence between
Purpose:. To compare accuracy of
Introduction. An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical
Aims. This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the
We have investigated the errors in the identification of the
Summary. There is tremendous variability amongst surgeons' ability to reference anatomic landmarks. This may suggest the necessity of other objective methods in determining femoral alignment and rotation. Introduction. Despite the durability of total knee arthroplasty, there is much room for improvement with regards to functional outcome and patient satisfaction. One important factor contributing to poor outcomes after TKA is malrotation of the femoral component. It has been postulated that this is due to failure of surgeons to correctly reference bony landmarks, principally the femoral epicondyles, however, this is unproven. The purpose of this study was to evaluate the accuracy of joint surgeons and trainees in identifying anatomic landmarks for positioning the femoral component and to determine the effect of prior training and experience. Methods. 23 surgeons (17 attending surgeons, 6 trainees) participated in this study. Using custom-made computer software, each surgeon interactively defined the epicondylar axis (EA), the anterior-posterior axis (AP) of the distal cut (Whiteside's Line) on 3D computer models of 10 normal femora reconstructed from CT scans. Each surgeon then aligned a standard distal cutting guide on the resected distal surface of each femoral model. A standardized procedure was employed to determine the true location of the epicondyles, the direction of Whiteside's Line and the orientation of the cutting guide. Each participant was surveyed to ascertain their extent of formal training in joint arthroplasty, their annual volume of TKA cases, and whether they routinely aligned their TKAs using Whiteside's and the
Introduction: Defects in rotational alignment of the femoral component in total knee replacements (TKR) may cause poor alignment of the extensor apparatus. There are numerous references concerning the correct alignment of the femoral component of a prosthesis:
Introduction:: Various reference axes are used in total knee arthroplasty to determine the femoral rotation including
Objective. Rotational malalignment of the femoral component still causes patellofemoral complications that result in failures in total knee arthroplasty (TKA). To achieve correct rotational alignment, a couple of anatomical landmarks have been proposed. Theoretically,
Background. Adequate rotation of femoral component in total knee arthroplasty(TKR) is mandatory for preventing numerous adverse sequelae. The
Introduction. Proper rotational alignment of the tibial component in total knee arthroplasty (TKA) could be achieved using several techniques. The self adjustment methodology allows the alignment of the tibial component under the femoral component after several flexion-extension movements. Our hypothesis was that this technique allowed a posterior tibial component alignment parallel to the femoral component posterior bicondylar axis. The aim of this study was to access this hypothesis using a post-operative CT-scan study. Materials and Methods. This prospective CT-scan study involved 94 TKA. Theses TKA were divided in two groups: group1: 50 knees with a pre-operative genu varum deformity (mean HKA: 172.2°), operated using a medial parapatellar approach, and group 2: 44 knees with a preoperative valgus deformity (mean HKA: 188.7°), operated using a lateral parapatellar approach. Four measures were done on each post-operative CT-scan: angle between anatomical
INTRODUCTION. Recent studies indicated that the knee has a single flexion/extension axis but debated the location of this axis. The relationship of the flexion/extension axis in the coronal plane to the mechanical axis has received little attention. The purpose of this study was to investigate the relationship of the various axes and references with respect to the mechanical axis in the coronal plane. MATERIALS AND METHODS. Subjects were prospectively scanned into a Virtual Bone Database (Stryker Orthopaedics, Mahwah, NJ). Database is a collection of body CT scans from subjects collected globally. Only CT Scans that met the following qualifications were accepted: ≤1 mm voxels and had slice thickness that was equal to the spacing between the slices (≤ 1.0mm). For each CT Scan, a frontal plane was created through the 2 most posterior points of the medial/lateral condyles and the most posterior point of the trochanter. Then, a transverse plane was created perpendicular to the frontal plane and bisects the 2 most distal points on the medial/lateral condyles. Finally, a saggital plane was created that was perpendicular to the frontal and transversal planes. The following axes were identified: Mechanical Axis of the Femur (MAF) (line between the center of the femoral head and the center of the knee sulcus);
The main purpose of the present study is to prospectively investigate whether preoperative functional flexion axis in patients with osteoarthritisand varus-alignment changes after total knee arthroplasty and whether a correlation exists both between preoperative functional flexion axis and native limb deformity. A navigated total knee arthroplasty was performed in 108 patients using a specific software to acquire passive joint kinematics before and after implant positioning. The knee was cycled through three passive range of motions, from 0 to 120. Functional flexion axis was computed using the mean helical axis algorithm. The angle between the functional flexion axis and the surgical
Introduction. Whether anterior referencing (AR) or posterior referencing (PR) are optimal to position and size the femoral component in Total Knee Arthroplasty (TKA) remains controversial. This controversy stems, in part, from a lack of understanding of whether one technique more consistently balances the medial/lateral collateral ligaments (MCL & LCL) in flexion and extension. Therefore, our goal was to compare AR and PR in terms of: (1) maximum MCL and LCL forces in passive flexion, and (2) medial and lateral gaps at full extension and 90‖ of flexion. In addition, we identified geometric landmarks that could help predict the ligament forces during flexion. Methods. Computational models of six knees were virtually implanted with TKAs based on our previously-developed framework. AR and PR were simulated in each of the six models. A Posterior Stabilized implant was utilized. Standard AR and PR cuts and component positioning were simulated with the femoral component aligned parallel to the
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral
After obtaining informed consent, 80 patients were randomised to undergo a navigated or conventional total knee replacement. All received a cemented, unconstrained, cruciate-retaining implant with a rotating platform. Full-length standing and lateral radiographs and CT scans of the hip, knee and ankle joint were carried out five to seven days after operation. No notable differences were found between computer-assisted navigation and conventional implantation techniques as regards the rotational alignment of the femoral or tibial components. Although the deviation from the