Advertisement for orthosearch.org.uk
Results 1 - 20 of 28
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 25 - 25
1 Dec 2022
Spina G Napoleone F Mancuso C Gasparini G Mercurio M Familiari FF
Full Access

Magnetic resonance imaging (MRI) is the gold standard for the diagnosis of the pathologies affecting the glenohumeral joint and the rotator cuff diseases. MRI allows to highlight anatomic discontinuities of both muscles and tendons. However, MRI diagnostic accuracy has not proven to be highly sensitive in distinguishing between a partial-thickness tear and a full-thickness rotator cuff tear. The purpose of this study was to determine if MRI under axial traction can be helpful in increasing MRI sensitivity to identify partial-thickness rotator cuff tears. The study included 10 patients (4 males and 6 females) who had clinical examination and MRI suggesting a partial-thickness rotator cuff tear. They were candidates for shoulder arthroscopy because of persistent symptoms after at least three months of conservative treatment. The patients underwent a new MRI (under axial traction: MRI-AT) with a 4-kg weight applied to the affected arm. Then the patients underwent arthroscopy to confirm the diagnosis. Patients with a suspected full-thickness rotator cuff tear were excluded from the study. Patients’ average age was 52.4 years, and the dominant side was affected in 77.7% of the cases. Preoperative Constant-Murley Score was 57. MRI-AT showed that 3 patients were affected by a complete tear of the rotator cuff, 3 patients by a partial-thickness rotator cuff tear and 4 patients had no lesion. The analysis of data showed that: under axial traction the subacromial space increased by 0,2 mm (P value = 0,001075), the superior glenohumeral space decreased by 2.4 mm (P value = 0,07414), the inferior glenohumeral space increased by 0.3 mm (P value = 0,02942), the acromial angle decreased by 1.9° (P value = 0,0002104) and the acromion-glenohumeral angle decreased by 0.3° (P-value = 0,01974). Two experienced evaluators analyzed previous standard MRI and MRI-AT scans in a double-blinded fashion, with inter-rater evaluation of all the images and measures. Intraclass correlation coefficient (ICC) has been utilized to assess the reliability of the measures performed by different operators. ICC always resulted in more than 0.7, showing a high concordance among values in the same group. A comparative evaluation between standard MRI and MRI-AT has been conducted to highlight possible discrepancies and this has been compared to intraoperative findings. Concordance of the values was 89% between standard MRI and MRI-AT and 100% between MRI under axial traction and intraoperative findings. This study showed a high correlation between the diagnosis achieved with MRI-AT and the intraoperative arthroscopic findings. The use of MRI-AT in clinical practice may improve the diagnostic sensitivity of this method to detect a partial-thickness rotator cuff tear


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 58 - 58
1 Nov 2021
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction and Objective. Low back pain (LBP) is a major cause of long-term disability in adults worldwide and it is frequently attributed to intervertebral disc (IVD) degeneration. So far, no consensus has been reached regarding appropriate treatment and LBP management outcomes remain disappointing. Spine unloading or traction protocols are common non-surgical approaches to treat LBP. These treatments are widely used and result in pain relief, decreased disability or reduced need for surgery. However, the underlying mechanisms -namely, the IVD unloading mechanobiology- have not yet been studied. The aim of this first study was to assess the feasibility of IVD unloading in a large animal organ culture set-up and evaluate its impact on mechanobiology. Materials and Methods. Bovine tail discs (diameter 16.1 mm ± 1.2 mm), including the endplates, were isolated and prepared for culture. Beside the day0 sample that was processed directly, three other discs were cultured for 3 days and processed on day4. One disc was loaded in the bioreactor according to a previously established physiological (compressive) loading protocol (2h/day, 0.2Hz). The two other discs were embedded in biocompatible resin, leaving the cartilage endplate free to permit nutrient diffusion, and fitted in the traction holder; one of these discs was kept in free swelling conditions, whereas the second was submitted to cyclic traction loading (2h/day, 0.2Hz) corresponding to 30% of the animal body weight corrected for organ culture. Results. The cell viability assessed on lactate dehydrogenase and ethidium homodimer stained histological slides was not different between the three cultured discs. This means that the disc viability was not affected neither by the embedding, nor by the traction itself. Compared to the physiologically loaded disc, the gene expression of COL1, COL2 and ACAN was higher in the nucleus pulposus and inner annulus fibrosus of the traction treated disc. In the outer annulus fibrosus of this disc TAGLN and MKX were higher expressed upon traction than in the physiologically loaded disc. Conclusions. Based on these preliminary data, we can conclude that large animal organ culture allows effective unloading of the disc, while preserving cell viability and modulating cellular gene expression responses. This sets the ground for future experiments and opens the door to an evidence-based improvement of clinical spine traction protocols and LBP management overall


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 124 - 124
1 Nov 2021
Mariscal G Camarena JN Galvañ T Barrios C Fernández P
Full Access

Introduction and Objective. The treatment of severe deformities often requiring aggressive techniques such as vertebral resection and osteotomies with high comorbidity. To mitigate this risk, several methods have been used to achieve a partial reduction of stiff curves. The objective of this study was to evaluate and quantify the effectiveness of the Perioperative Halo-Gravity Traction (HGT) in the Treatment of Severe Spinal Deformity in Children. Materials and Methods. A historical cohort of consecutive childs with severe spinal deformity who underwent to a perioperative HGT as a part of the treatment protocol. Minimum follow-up of 2 years. Demographic, clinical and radiological data, including time duration of perioperative HGT and Cobb angle in the coronal and sagittal plane. The radiological variables were measured before the placement of the halo, after placement of the halo, at the end of the period of traction, after surgery and in the final follow-up. Results. Seventeen males (57%) and twenty females (43%) were included in the final analysis. The mean age was 6.5 years (SD 4.8). The most frequent etiology for the spinal deformity was syndromic (13 patients). The average preoperative Cobb angle was 88º (range, 12–135). HGT was used in 17 cases prior to a primary surgery and in 20 cases prior to a revision surgery. After the HGT, an average correction of 34% of the deformity was achieved (p <0.05). After the surgery this correction improved. At 2-year follow-up there was a correction loss of 20% (p <0.05). There were 3 complications (8.1%): 2 pin infections and cervical subluxation. Conclusions. The application of HGT in cases of severe rigid deformity is useful allowing a correction of the preoperative deformity of 34%, facilitating surgery. Preoperative HGT seems to be a safe and effective intervention in pediatric patients with high degree deformity


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 916 - 920
1 Aug 2001
Schenker M Birch R

The precise point of intradural rupture in preganglionic traction injuries to the brachial plexus has been a subject of controversy. In this study of avulsed roots we have shown that rupture occurs at varying levels. True avulsion of the root with attached spinal cord tissue was seen in two cases and in the remainder rupture was peripheral to the central-peripheral transition zone. We have further shown that corpora amylacea marked the boundary between tissue of the central and peripheral nervous systems. This observation provides a basis for renewed work towards the direct repair of intradural ruptures of the ventral and dorsal roots


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 41 - 41
14 Nov 2024
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction. Intervertebral disc degeneration has been associated with low back pain (LBP) which is a major cause of long-term disability worldwide. Observed mechanical and biological modifications have been related to decreased water content. Clinical traction protocols as part of LBP management have shown positive outcomes. However, the underlying mechanical and biological processes are still unknown. The study purpose was to evaluate the impact of unloading through traction on the mechanobiology of healthy bovine tail discs in culture. Method. We loaded bovine tail discs (n=3/group) 2h/day at 0.2Hz for 3 days, either in dynamic compression (-0.01MPa to -0.2MPa) or in dynamic traction (-0.01MPa to 0.024MPa). In between the dynamic loading sessions, we subjected the discs to static compression loading (-0.048MPa). We assessed biomechanical and biological parameters. Result. Over the 3 days of loading, disc height decreased upon dynamic compression loading but increased upon unloading. The neutral zone was restored for all samples at the end of the dynamic unloading. Upon dynamic compression, the stiffness increased over time while the hysteresis decreased. Upon dynamic unloading, sulfated glycosaminoglycan (sGAG) release in the medium was lower at the endpoint. In the outer annulus fibrosus (AFo), we saw a higher water/sGAG of at least 30%. In the nucleus pulposus, COL2 mRNA was expressed more highly upon dynamic unloading while MMP3, iNOS and TRPV4 expression levels were lower. In the AFo of the unloading group, COL2 expression was higher but COL1 was lower. Conclusion. The biomechanical and biological results consistently indicate that dynamic unloading of healthy bovine discs in culture facilitates water uptake and promotes an anti-catabolic response which reflects a function optimization of the disc. This work combines biomechanical and biological results and opens the door to evidence-based improvement of regenerative protocols for degenerated discs and conservative LBP management. This study is funded by AO Foundation and AO Spine


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 103 - 103
11 Apr 2023
Domingues I Cunha R Domingues L Silva E Carvalho S Lavareda G Carvalho R
Full Access

Patients who are Jehovah's witnesses do not accept blood transfusions. Thus, total hip arthroplasty can be challenging in this group of patients due to the potential for blood loss. Multiple strategies have been developed in order to prevent blood loss. A 76-year-old female, Jehovah's witness medicated with a platelet antiaggregant, presented to the emergency department after a fall from standing height. Clinically, she had pain mobilizing the right lower limb and radiological examination revealed an acetabular fracture with femoral head protrusion and ipsilateral isquiopubic fracture. Skeletal traction was applied to the femur during three weeks and no weight bearing was maintained during the following weeks. Posteriorly, there was an evolution to hip osteoarthritis with necrosis of the femoral head. The patient was submitted to surgery six months after the initial trauma, for a total hip arthroplasty. The surgery was performed with hypotensive anaesthesia, careful surgical technique and meticulous haemostasis and there was no need for blood transfusion. Posteriorly, there was a positive clinical evolution with progressive improvement on function and deambulation. Total hip arthroplasty may be safely carried out with good clinical outcomes in Jehovah's witnesses, without the need for blood transfusion, if proper perioperative precautions are taken, as has already been shown in previous studies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 57 - 57
14 Nov 2024
Birkholtz F Eken M Boyes A Engelbrecht A
Full Access

Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve model performance in smaller datasets. This is encouraging for wider application of machine-learning technology in medical imaging evaluation, including less common orthopaedic pathologies


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2022
Trisolino G Frizziero L Santi GM Alessandri G Liverani A Menozzi GC Depaoli A Martinelli D Di Gennaro GL Vivarelli L Dallari D
Full Access

Paediatric musculoskeletal (MSK) disorders often produce severe limb deformities, that may require surgical correction. This may be challenging, especially in case of multiplanar, multifocal and/or multilevel deformities. The increasing implementation of novel technologies, such as virtual surgical planning (VSP), computer aided surgical simulation (CASS) and 3D-printing is rapidly gaining traction for a range of surgical applications in paediatric orthopaedics, allowing for extreme personalization and accuracy of the correction, by also reducing operative times and complications. However, prompt availability and accessible costs of this technology remain a concern. Here, we report our experience using an in-hospital low-cost desk workstation for VSP and rapid prototyping in the field of paediatric orthopaedic surgery. From April 2018 to September 2022 20 children presenting with congenital or post-traumatic deformities of the limbs requiring corrective osteotomies were included in the study. A conversion procedure was applied to transform the CT scan into a 3D model. The surgery was planned using the 3D generated model. The simulation consisted of a virtual process of correction of the alignment, rotation, lengthening of the bones and choosing the level, shape and direction of the osteotomies. We also simulated and calculated the size and position of hardware and customized massive allografts that were shaped in clean room at the hospital bone bank. Sterilizable 3D models and PSI were printed in high-temperature poly-lactic acid (HTPLA), using a low-cost 3D-printer. Twenty-three operations in twenty patients were performed by using VSP and CASS. The sites of correction were: leg (9 cases) hip (5 cases) elbow/forearm (5 cases) foot (5 cases) The 3D printed sterilizable models were used in 21 cases while HTPLA-PSI were used in five cases. customized massive bone allografts were implanted in 4 cases. No complications related to the use of 3D printed models or cutting guides within the surgical field were observed. Post-operative good or excellent radiographic correction was achieved in 21 cases. In conclusion, the application of VSP, CASS and 3D-printing technology can improve the surgical correction of complex limb deformities in children, helping the surgeon to identify the correct landmarks for the osteotomy, to achieve the desired degree of correction, accurately modelling and positioning hardware and bone grafts when required. The implementation of in-hospital low-cost desk workstations for VSP, CASS and 3D-Printing is an effective and cost-advantageous solution for facilitating the use of these technologies in daily clinical and surgical practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 13 - 13
17 Nov 2023
Armstrong R McKeever T McLelland C Hamilton D
Full Access

Abstract. Objective. There is no specific framework for the clinical management of sports related brachial plexus injuries. Necessarily, rehabilitation is based on injury presentation and clinical diagnostics but it is unclear what the underlying evidence base to inform rehabilitative management. Methods. A systematic review of the literature was undertaken in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We applied the PEO criteria to inform our search strategy to find articles that reported the rehabilitative management of brachial plexus injuries sustained while playing contact sports. An electronic search of Medline, CINAHL, SPORTDiscus and Web of Science from inception to 3rd November 2022 was conducted. MESH terms and Boolean operators were employed. We applied an English language restriction but no other filters. Manual searches of Google Scholar and citation searching of included manuscripts were also completed. All study types were considered for inclusion provided they were published as peer-reviewed primary research articles and contained relevant information. Two investigators independently carried out the searches, screened by title, abstract and full text. Two researchers independently extracted the data from included articles. Data was cross-checked by a third researcher to ensure consistency. To assess internal validity and risk of bias, the Joanna Briggs Institute (JBI) critical appraisal tools were utilised. Results. The search generated 88 articles. Following removal of duplicates, 43 papers were evaluated against the eligibility criteria. Nine were eligible for full text review, with the majority of exclusions being expert opinion articles. Eight case reports were included. One article reported three individuals, resulting in data for ten athletes. The mean age was 19.8 years (±4.09). Injuries occurred in five American football players, two wrestlers, two rugby players, and a basketball player. No two studies applied the same diagnostic terminology and the severity of injury varied widely. Burning pain and altered sensation was the most commonly reported symptom, alongside motor weakness in the upper limb. Clinical presentation and management differed by injury pattern. Traction injuries caused biceps motor weakness and atrophy of the deltoid region, whereas compression injuries led to rotator cuff weakness. In all cases treatment was separated into acute and rehabilitative management phases, however the time frames related to these differed. Acute interventions varied but essentially entailed soft tissue inflammation management. Rehabilitation approaches variously included strengthening of shoulder complex and cervical musculature. Return-to-play criteria was opaque. The methodological quality of the case reports was acceptable. Four met all nine of the JBI evaluation criteria, and a further three met at least 75% of items. Conclusion(s). There is a distinct lack of evidence supporting rehabilitation management of sports related brachial plexus injury. Through systematic review we found only eight reports, representing ten individual case studies. No trials, cohort studies, or even retrospective registry-based studies are available to inform clinical management, which, necessarily, is driven by expert opinion and application of basic rehabilitation principles. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 25 - 25
1 Dec 2020
lakhani A Sharma E
Full Access

Introduction. Pediatric femoral fracture including supracondylar and subtrochantric fracture constitutes 1.6% of all pediatrics fractures. 1. Elastic nails remain the standard treatment of choice in mid shaft transverse femoral fracture in children weighting less than 45kg. 2. But in subtrochantric and spiral femoral fracture, failure rate of TENS nails are quite high. 3. . Material and methods. We retrospectively reviewed 30 subtrochantric fracture in children (average age 9 years) treated with bridge plate by mini invasive approach. Result. All fracture united well in average 14 weeks. Single complication was 5mm limb lengthening due to fixation in traction on fracture table in one case. We strongly recommend bridge plate in complex femoral fracture in children


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 71 - 71
1 Jan 2017
Yabuno K Sawada N Etani Y
Full Access

Instability following total hip arthroplasty (THA) is an unfortunately frequent and serious problem that requires thorough evaluation and preoperative planning before surgical intervention. Prevention through optimal index surgery is of great importance, as the management of an unstable THA is challenging even for an experienced joints surgeon. However, even after well-planned surgery, a significant incidence of recurrent instability still exists. Moreover leg-length discrepancy (LLD) after THA can pose a substantial problem for the orthopaedic surgeon. Such discrepancy has been associated with complications including nerve palsy, low back pain, and abnormal gait. Consequently we may use a big femoral head or increase femoral offset (FO) in unstable THA for avoiding LLD. However we do not know the relationship between FO and STT. The objective of this study is to assess hip instability of three different FOs in same patient undergoing THA during an operation. We performed 70 patients who had undergone unilateral THA using CT based navigation system at a single institution for advanced osteoarthoritis from May 2013 to May 2014. We used postero-lateral approach in all patients. After cup and stem implantation, we assessed soft tissue tensioning in THA during operation. Trial necks were categorized into one of three groups: standard femoral offset (sFO), high femoral offset (hFO, +4mm compared to sFO) and extensive high femoral offset (ehFO, +8 mm compared to sFO). We measured distance of lift-off about each of three femoral necks using CT based navigation system and a force gauge with hip flexed at 0 degrees and 30 degrees under a traction of lower extremity. Traction force was 40% of body weight. Forty patients had leg length restored to within +/− 3mm of the contralateral side by post-operative CT analysis. We examined these patients. Traction force was 214±41.1Nm. The distances of lift-off were 8.8±4.5mm (sFO), 7.4±4.1mm (eFO), 5.1±3.9mm (ehFO) with 0 degrees hip flexion and neutral abduction(Abd) / adduction(Add) and neutral internal rotation(IR)/ external rotation(ER). The distance of lift-off were 11.5±5.9mm (sFO),10.5±5.5mm (eFO),9.1±5.9mm (ehFO) with 30 degrees hip flexion and neutral Abd / Add and neutral IR/ER. Significant difference was observed between 0 degrees hip flexion and 30 degrees hip flexion on each FO (p<0.05). On changing the distance of lift-off, hFO to ehFO (2.2±1.6mm)was more stable than sFO to hFO (1.4±1.7mm)with 0degrees hip flexion.(p<0.05). On the other hands, hFO to ehFO (1.4±1.6mm) was more stable than sFO to hFO (1.0±1.3mm) with 30 degrees hip flexion. However, we did not find significant difference (p=0.18). Hip instability was found at 30 degrees hip flexion more than at 0 degrees hip flexion. We found that changing ehFO to sFO can lead to more stability improvement of soft tissue tensioning than sFO to eFO, especially at 0 degrees hip flexion. Whereas In a few cases, the distance of lift-off did not change with increasing femoral offset by 4mm. When you need more stability in THA without LLD, We recommend increasing FO by 8mm


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2017
Pereira J Ramos A Completo A
Full Access

Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in inclination 40 and 45°. Combinations of these were also considered. The experimental set-up was applied according to a system previously established by Ramos et al. (2013) in the anatomic position. The femur rotates distally and the Pelvic moves vertically as model changes, such that the same boundary conditions are satisfied. This system allows compensating motions of the acetabular cup orientation. A vertical load of 1700 N was applied on all cases, which have resulted in joint reaction force of 2.4 kN. The femur and iliac bone was instrumented with rosettes. 5 repetitions at each position were conducted. When the femur was instrumented with three rosettes in medial, anterior and posterior aspect, the maximum strain magnitude was observed in the medial aspect of femur with a minimum principal strain of −2070µε for 45° inclination and 20° of anterversion. The pubic region was found most critical region after instrumenting the Iliac bone with four rosettes, with a minimum principal strain around −2500µε (rosette 1), for the 45° inclination and 20° of anterversion. We have observed the great influence of the inclination on the strain distribution, changing its magnitude from compression to traction in different bone regions. The minimum principal strain is more critical in medial aspect of the femur and the influence of strain is about 7% when orientation and inclination change. The maximum influence was observed in the anterior aspect, where the anteversion presents a significant influence. The results show the interaction between inclination and anterversion in all aspects, being observed lower values in lower angles. The orientation of the acetabular cup significantly influences the strain distribution on the iliac surface. Besides, as anterversion increases, more strains are induced, mainly in the region of iliac body (rosette 3)


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 93 - 93
1 May 2012
Bhushan P Varghese M Gupta R
Full Access

Flexion Deformity of knee is the most common deformity in post polio residual deformity. Wilson's release, supracondylar osteotomy etc have been described for its treatment. We present our result of fractional hamstring lengthening followed by gradual distraction using threaded rod in hollow tube to treat flexion deformity of knee. This retrospective study included 150 cases (80 males and 70 females) with the mean of 15 years (8-22yrs). The mean duration of deformity was 6 years (2 – 14yrs) with mean follow up 0f 3 years. The mean preoperative flexion deformity was 45degree (110 – 30 degree) with a mean pre operative further flexion of 110 degree (130 – 90) .20 cases were had a crawling gait and 10 cases were wheel chair bound. Flexion got corrected to 0 degree in 110 cases (P value <0.01). Post operative mean arc of motion was 80degree We had 10 cases who could not tolerate plaster and hence were put on traction . 20 cases had knee stiffness on removal of plaster which could not improve on physiotherapy. 10 cases had superficial infection cured with dressings. Our findings indicate that this method is very effective in the treatment of flexion deformity of knee with complication of knee stiffness in older cases


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 34 - 34
1 Mar 2012
Hasegawa M Kawamura G Wakabayashi H Sudo A Uchida A
Full Access

Introduction. Standard surgical exposure reduces blood flow to the patella during total knee arthroplasty (TKA). Reduction of patellar blood flow has resulted in patellofemoral complications including osteonecrosis and patellar fracture, necessitating revision surgery. Eversion of the patella is typically used to gain access to the knee joint in most TKA surgical approaches. More recently, the development of minimally invasive surgery (MIS) techniques has avoided patellar eversion by subluxing the patella. The present study is the first to measure patellar blood flow during MIS TKA with the knee in both extension and 90 degrees of flexion followed by lateral retraction and then eversion of the patella. Methods. Patellar blood flow was measured using laser Doppler flowmetry in 40 patients during MIS TKA. Patients included 32 women and 8 men who had a mean age of 73 years (range, 52 to 88 years) and a mean weight of 59 kg (39 to 85 kg). The pre-operative diagnoses were osteoarthritis in 36 patients and rheumatoid arthritis in four patients. All patients underwent MIS TKA using the mini-midvastus approach. After initial blood flow was assessed with the leg in full extension, further measurements were performed after lateral retraction and after eversion of the patella. Then, blood flow was assessed with the knee in 90 degrees of flexion followed by lateral retraction and then eversion of the patella. Results. For measurements made during knee extension, a significant reduction in flow was observed during eversion of the patella compared with the neutral patellar position (P < 0.001). However, no significant difference was found between lateral retraction of the patella and the neutral patellar position. A significant reduction in flow was noted when the leg was flexed from full extension to 90 degrees (P < 0.001). For measurements made with the knee in 90 degrees of flexion, a significant reduction in flow was observed during eversion of the patella (P = 0.002) and a significant increase was noted during lateral retraction of the patella compared with the neutral position (P < 0.001). Conclusion. Patella eversion may result in traction both on medial vessels and those within the quadriceps mechanism, whereas, lateral retraction reduces the force exerted on the arteries within the quadriceps after the medial blood supply was interrupted by medial arthrotomy. In addition, the position of the leg had a great impact on patellar blood flow. MIS TKA without patellar eversion may be useful for preventing a reduction in patellar blood flow


Bone & Joint 360
Vol. 6, Issue 5 | Pages 42 - 44
1 Oct 2017
Ross A


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


Bone & Joint Research
Vol. 4, Issue 11 | Pages 176 - 180
1 Nov 2015
Mirghasemi SA Rashidinia S Sadeghi MS Talebizadeh M Rahimi N

Objectives

There are various pin-in-plaster methods for treating fractures of the distal radius. The purpose of this study is to introduce a modified technique of ‘pin in plaster’.

Methods

Fifty-four patients with fractures of the distal radius were followed for one year post-operatively. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than seven days after injury. Range of movement and functional results were evaluated at three and six months and one and two years post-operatively. Radiographic parameters including radial inclination, tilt, and height, were measured pre- and post-operatively.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1274 - 1281
1 Sep 2014
Farhang K Desai R Wilber JH Cooperman DR Liu RW

Malpositioning of the trochanteric entry point during the introduction of an intramedullary nail may cause iatrogenic fracture or malreduction. Although the optimal point of insertion in the coronal plane has been well described, positioning in the sagittal plane is poorly defined.

The paired femora from 374 cadavers were placed both in the anatomical position and in internal rotation to neutralise femoral anteversion. A marker was placed at the apparent apex of the greater trochanter, and the lateral and anterior offsets from the axis of the femoral shaft were measured on anteroposterior and lateral photographs. Greater trochanteric morphology and trochanteric overhang were graded.

The mean anterior offset of the apex of the trochanter relative to the axis of the femoral shaft was 5.1 mm (sd 4.0) and 4.6 mm (sd 4.2) for the anatomical and neutralised positions, respectively. The mean lateral offset of the apex was 7.1 mm (sd 4.6) and 6.4 mm (sd 4.6), respectively.

Placement of the entry position at the apex of the greater trochanter in the anteroposterior view does not reliably centre an intramedullary nail in the sagittal plane. Based on our findings, the site of insertion should be about 5 mm posterior to the apex of the trochanter to allow for its anterior offset.

Cite this article: Bone Joint J 2014;96-B:1274–81.


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1150 - 1150
1 Aug 2013
Ross A Birch R

We welcome letters to the Editor concerning articles that have recently been published. Such letters will be subject to the usual stages of selection and editing; where appropriate the authors of the original article will be offered the opportunity to reply.