The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of
We studied the effects of coating
We have studied the effect of hydroxyapatite (HA) coating in 15 ovariectomised and 15 normal rats which had had a sham procedure. Twenty-four weeks after operation, HA-coated implants were inserted into the intramedullary canal of the right femur and uncoated implants into the left femur. The prostheses were removed four weeks after implantation. Twelve specimens in each group had mechanical push-out tests. Sagittal sections of the other three were evaluated by SEM. The bone mineral density (BMD) of the dissected left tibia was measured by dual-energy x-ray absorptiometry. The difference in BMD between the control and ovariectomised tibiae was 35.01 mg/cm2 (95% CI, 26.60 to 43.42). The push-out strength of the HA-coated implants was higher than that of the uncoated implants in both groups (p <
0.0001), but the HA-coated implants of the ovariectomised group had a reduction in push-out strength of 40.3% compared with the control group (p <
0.0001). Our findings suggest that HA-coated implants may improve the fixation of a cementless total hip prosthesis but that the presence of osteoporosis may limit the magnitude of this benefit.
Decreasing the bulk weight without losing the biomechanical properties of commercial pure titanium (Cp-Ti) medical implants is now possible by using Laser Powder Bed Fusion (L-PBF) technology. Gyroid lattice structures that have precious mechanical and biological advantages because of similarity to trabecular bone. The aim of the study was to design and develop L-PBF process parameter optimization for manufacturing gyroid lattice Cp-Ti structures. The cleaning process was then optimized to remove the non-melted powder from the gyroid surface without mechanical loss. Gyroid cubic designs were created with various relative densities by nTopology. L-PBF process parameter optimization was progressed using with Cp-Ti (EOS TiCP Grade2) powder in the EOS M290 machine to achieve parts that have almost full dense and dimensional accuracy. The metallography method was made for density. Dimensional accuracy at gyroid wall thicknesses was investigated between designed and manufactured via stereomicroscope, also mechanical tests were applied with real time experiment and numerical analysis (ANSYS). Mass loss and strut thickness loss were investigated for chemical etching cleaning process. Gyroid parts had 99,5% density. High dimensional accuracy was achieved during L-PBF process parameters optimization. Final L-PBF parameters gave the highest 19% elongation and 427 MPa yield strength values at tensile test. Mechanical properties of gyroid were controlled with changing relative density. A minute chemical etching provided to remove non-melted powders. Compression test results of gyroids at numerical and real-time analysis gave unrelated while deformation behaviors were compatible with each other. Gyroid Cp-Ti osteosynthesis mini plates will be produced with final L-PBF process parameters. MTT cytotoxicity test will be characterized for cell viability.
Extensor mechanism and abductor reconstructions in total joint arthroplasty are problematic. Growing tendon into a metallic implant would have great reconstructive advantages. With the introduction of porous metal implants, it was hoped that tendons could be directly attached to implants. However, the effects of the porous metal structure on tissue growth and pore penetration is unknown. In this rat model, we investigated the effect of pore size on tendon repair fixation using printed
Production of porous
Infection of implanted medical devices (biomaterials), like
Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a
The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous
Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for
In orthopedic surgery, implant infections are a serious issue and difficult to treat. The aim of this study was to use superparamagnetic nanoporous silica nanoparticles (MNPSNP) as candidates for directed drug delivery. Currently, short blood circulation half-life due to interactions with the host's immune system hinder nanoparticles in general from being clinically used. PEGylation is an approach to reduce these interactions and to enhance blood circulation time. The effect of PEGylation of the used . 68. Ga-labelled MNPSNP on the distribution and implant accumulation was examined by PET/CT imaging and gamma counting in an implant mouse model. Female Balb/c mice (n=24) received a magnetic implant subcutaneously on the left and a
Abstract. Objectives. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model. Methods. In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee. Results.
Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on
Orbital floor (OF) fractures are commonly treated by implanting either bioinert titanium or polyethylene implants, or by autologous grafts. A personalized implant made of biodegradable and osteopromotive poly(trimethylene carbonate) loaded with hydroxyapatite (PTMC-HA) could be a suitable alternative for patients where a permanent implant could be detrimental. A workflow was developed from the implant production using stereolithography (SLA) based on patient CT scan to the implantation and assessment its performance (i.e. implant stability, orbit position, bone formation) compared to personalised
The goal was to analyze the cellular response, specifically the osteogenic capacity, of
Abstract. Introduction. The long-term biological success of cementless orthopaedic prostheses is highly dependent on osteointegration. Pre-clinical testing of new cementless implant technology however, requires live animal testing, which has anatomical, loading, ethical and cost challenges. This proof-of-concept study aimed to develop an in vitro model to examine implant osteointegration under known loading/micromotion conditions. Methods. Fresh cancellous bone cylinders (n=8) were harvested from porcine femur and implanted with additive manufactured porous
Adhered bacteria on titanium surfaces are able to decrease its corrosion potential and impedance values at the lowest frequencies. This result points to the detrimental influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes. Titanium is one of the most used metallic biomaterials for biological and implant applications. The spontaneous formation of a protective passive film around 2–5 nm thick, make titanium unique as a biomaterial for implants. Its composition has been described by a three-layer model: TiO2/Ti2O3/TiO and its stability is ultimately responsible for the success of osseointegrated
We
Summary Statement. The modulation of both quantity and quality of peri-implant bone with either PTH or loading may be viable options to improve implant fixation and patient outcomes. A strong bone-implant interface is essential for successful joint replacement surgery. This study investigated the differences in bone surrounding and within a porous
Implant infection is an increasing problem in orthopedic surgery, especially due to progressive antibiotic resistance and an aging population with rising numbers of implantations. As a consequence, new strategies for infection prevention are necessary. In the previous study it was hypothesized that laser-structured implant surfaces favor cellular adhesion while hindering bacterial ongrowth and therewith contribute to reduce implant infections. Cuboid