We identified 26
INTRODUCTION. Conventional surgical exposures are usually inadequate for 2-stage revision knee replacement ofinfected implants. Reduced range of motion, extensor mechanism stiffness, peripatellar contracture and soft tissue scarring make patellar eversion difficult and forced eversion places the integrity of the extensor mechanism at risk. On the contrary, a wide exposure is fundamental to allow complete cement spacer removal, soft tissue balancing, management of bone loss and reimplantation without damaging periarticular soft tissues. OBJECTIVES. To compare the long-term clinical, functional and radiographic results and the reinfection rate of the quadriceps snip approach and the
Patients with recurrent patella instability, who have an abnormal patellofemoral alignment (patella height or tibial tubercle-trochlear groove (TTTG) distance), benefit from tibial tubercle transfer along with medial patellofemoral ligament (MPFL) reconstruction. Between July 2008 and April 2013, 18 patients (21 knees) with recurrent patellar instability underwent combined MPFL reconstruction and tibial tubercle transfer. All patients had abnormal patellofemoral alignment in addition to MPFL insufficiency. 15 patients (16 knees) with a mean age of 24 years (16–41) had a mean follow up of 26 months (6–55). We assessed the outcome using KOOS, KUJALA, activity level and patient satisfaction scores. All patients had a stable patella. There was a significant improvement in outcome scores in 12 out of 15 patients. At final follow up KOOS score had improved from 68.25(44 to 93.9) to 77.05(48.8 to 96.4) and KUJALA score had improved from 63.3(41–88) to 78.06 (45 to 99). 9 patients showed excellent results and achieved at least a pre-injury level of activity. 4 of these had activity level better then preoperative level. 6 patients had a lower activity level than pre-injury (1 – ongoing physiotherapy, 1 – because of lack of confidence, and 4 – Life style modification). 14 patients were satisfied and happy to recommend this procedure. There were 3 postop complications, with 2 cases of stiffness and 1 case of non-union of the tibial tuberosity. Our prospective study has shown that restoration of tibial tubercle-trochlear groove index, Patella height and Medial Patellofemoral Ligament reconstruction yields good results in carefully selected patients.
Recurrent patellar instability is a common problem and there are multiple demographic and pathoanatomic risk factors that predispose patients to dislocating their patella. The most common of these is trochlear dysplasia. In cases of severe trochlear dysplasia associated with patellar instability, a sulcus deepening trochleoplasty combined with a medial patellofemoral ligament reconstruction (MPFLR) may be indicated. Unaddressed trochlear pathology has been associated with failure and poor post-operative outcomes after stabilization. The purpose of this study is to report the clinical outcome of patients having undergone a trochleoplasty and MPFLR for recurrent lateral patellofemoral instability in the setting of high-grade trochlear dysplasia at a mean of 2 years follow-up. A prospectively collected database was used to identify 46 patients (14 bilateral) who underwent a combined primary MPFLR and trochleoplasty for recurrent patellar instability with high-grade trochlear dysplasia between August 2013 and July 2021. A single surgeon performed a thin flap trochleoplasty using a lateral para-patellar approach with lateral retinaculum lengthening in all 60 cases. A
Achievement of adequate exposure in revision total knee arthroplasty is critical as it reduces the surgical time, enhances the ability for both component removal and reconstruction, and avoids devastating complications such as extensor mechanism disruption. However, this can be challenging as prior multiple surgeries and limited mobility contribute to a loss of tissue elasticity, thickened capsular envelope, and peri-articular soft tissue adhesions. A thorough pre-operative assessment of a patient's past surgical history, comorbidities, pre-operative radiographs (i.e. the presence of severe patella baja), and physical examination including range of motion, prior incisions, and soft tissue pliability are useful in determining the appropriate surgical techniques necessary for a successful revision. A systematic approach to the ankylosed knee is critical. Most techniques are geared towards mobilization of the extensor mechanism to safely displace the patella for component exposure. The initial exposure should consist of a long skin incision, a subperiosteal medial release, and debridement of suprapatellar, medial, and lateral adhesions to the femoral condyles. A lateral capsular release can prove helpful in further mobilization of the extensor mechanism. When performing a medial parapatellar arthrotomy it's important to keep in mind further extensile exposure techniques that may be required. For example, the arthrotomy should not extend proximally into the vastus intermedius or rectus femoris in the event that a quadriceps snip technique is to be used as this can compromise the ability to repair this exposure. Despite a large exposure and release of adhesions, sometimes the extensor mechanism remains at risk of rupture and adequate visualization cannot be obtained. In this event, extensile exposures such as a quadriceps snip, quadriceps turndown or
The battle of revision TKA is won or lost with safe, effective, and minimally bony-destructive implant removal, protecting all ligamentous stabilisers of the knee and, most importantly, the extensor mechanism. For exposure, incisions should be long and generous to allow adequate access. A standard medial parapatellar capsular arthrotomy is preferred. A synovectomy is performed followed by debridement of all scar tissue, especially in the medial and lateral gutters. All peripatellar scar tissue is excised followed by release of scar tissue within the patellar tendon, allowing for displacement or everting of the patella. As patellar tendon avulsion at any time of knee surgery yields disastrous results, the surgeon should be continuously evaluating the patellar tendon integrity, especially while displacing/everting the patella and bringing the knee into flexion. If displacement/eversion is difficult, consider rectis-snip, V-Y quadricepsplasty, or
Exposure in revision total knee replacement can be quite challenging due to scar formation from one or many previous incisions. Disruption of the patellar or quadriceps tendon during revision must be avoided at all costs and many surgical maneuvers have been described to permit safe exposure in order to remove the implants during the initial stage of reconstruction. Standard maneuvers include recreation of the medial and lateral gutters, patient dissection to allow the soft tissue to stretch over time and proximal medial exposure of the tibia and release of the semimembranosis tendon insertion. There are three specialised techniques for exposure during revision total knee replacement: the quadriceps snip as described by Insall, the V-Y quadriceps turndown as described by Coonse and Adams, and the
Exposure in revision total knee replacement can be quite challenging due to scar formation from one or many previous incisions. Disruption of the patellar or quadriceps tendon during revision must be avoided at all costs and many surgical maneuvers have been described to permit safe exposure in order to remove the implants during the initial stage of reconstruction. Standard manoeuvres include recreation of the medial and lateral gutters, patient dissection to allow the soft tissue to stretch over time and proximal medial exposure of the tibia and release of the semimembranosis tendon insertion. There are three specialised techniques for exposure during revision total knee replacement: the quadriceps snip as described by Insall, the V-Y quadriceps turndown as described by Coonse and Adams, and the
MPFL reconstruction has demonstrated a very high success rate with improved patella stability, physical function, and patient-reported outcomes. However technical error and a lack of consideration of anatomic risk factors have been shown to contribute to failure after MPFL reconstruction. Previous research has also reported a complication rate of 26% following surgery. The purposes of this study were to determine the re-dislocation rate, type and number of complications, and most common additional surgical procedures following MPFL reconstruction. Patients with symptomatic recurrent patellofemoral instability underwent an MPFL reconstruction (n = 268) and were assessed with a mean follow-up of 31.5 months (minimally 24-months). Concomitant procedures were performed in addition to the MPFL reconstruction in order to address significant anatomic or biomechanical characteristics. Failure of the patellofemoral stabilization procedure was defined as post-operative re-dislocation of the patella. Rates of complications and re-procedures were assessed for all patients. The re-dislocation rate following MPFL reconstruction was 5.6% (15/268). There were no patella fractures. A total of 49/268 patients (18.3%) returned to the operating room for additional procedures following surgery. The most common reason for additonal surgery was removal of symptomatic
The moderator will lead a structured panel discussion that explores how to manage challenges commonly found in the multiply revised knee. Topics covered will include: (1) Exposure in the multiply operated knee (when to use quad snip,
Following a careful in-depth preoperative plan for revision TKA, the first surgical step is adequate exposure. It is crucial to plan your exposure for all contingencies. Prior incisions have tremendous implications and care must be taken to consider their impact. Due to the medially based vascular supply to the skin and superficial tissues about the knee, consideration for use of the most LATERAL incision should be made. It is essential to avoid the development of flaps which may compromise the skin and soft tissue which can have profound implications. Exposure options can be broken down into either PROXIMALLY based techniques or DISTALLY based options. The proximal based techniques involve a medial parapatella arthrotomy followed by the establishment of medial and lateral gutters. An assessment of the ability to evert or subluxate the patella should be made. Care must be taken to protect the insertion of the patella tendon into the tibial tubercle. If the patella is unable to be mobilised, then extension of arthrotomy proximal is performed. If this is not adequate, then consider inside out lateral release. If still unable to mobilise, then a QUAD SNIP is performed. In rare instances, you can connect the lateral release with quad snip resulting in a V-Y quadplasty, which results in excellent exposure. Another option is to employ DISTALLY based techniques such as the
The moderator will lead a structured panel discussion that explores how to manage challenges commonly found in the multiply revised knee. Topics covered will include: (1) Exposure in the multiply operated knee (when to use quad snip,
Success in knee revision begins in the office. The initial evaluations determine the implant design and pre-operative diagnosis. The physical examination identifies the presence of instability, stiffness, extensor mechanism malfunction and previous incisions all of which influence the planned procedure. Prior to surgery arrangements are made to have all manner of revision implants, removal tools, and allograft material available. Removal of implants must be done with a focus on preserving bone stock and the extensor mechanism. Initial exposure involves release of the gutters, lateral subluxation of the patella and removal of the polyethylene insert. These maneuvers combined with a quadriceps snip provide exposure for implant removal in 80–90% of cases. More extensive exposure options include quadriceps turndown,
The moderator will lead a structured panel discussion that explores how to manage challenges commonly found in the multiply revised knee. Topics covered will include: (1) Exposure in the multiply operated knee (when to use quad snip,
Systematic surgical exposure during revision total knee arthroplasty is essential for revision surgery. Surgical exposure protects the extensor mechanism, facilitates safe implant removal and allows for accurate reimplantation of components. The pre-operative plan is critical to achieving appropriate exposure in the revision setting. Evaluating the skin and previous incisions will aid in the exposure technique selected. The key to revision total knee arthroplasty is systematic releases. Revision total knees can be exposed with a standard medial parapatellar arthrotomy, a proximal medial tibial peel, and a quad snip. This takes tension off the stiff knee, is easy to repair, and does not require limitation of rehabilitation protocols. The patella need not be everted in the revision surgery. The Banana Peel technique is very helpful for the stiff knee. The
Exposure for revision knee requires using the previous incision, employing the “quad snip”, the “Banana Peel”, or the tubercle osteotomy. The “quad snip” is a 45-degree incision of the proximal extensor mechanism that helps protect the distal insertion on the tubercle. The “banana peel,” is my exposure of choice and has been used extensively for revision total knee arthroplasty (TKA) for more than 20 years in my community. We retrospectively reviewed use of this technique in a cohort of 100 consecutive patients who underwent tibial-femoral stemmed revision TKA. The technique involves peeling the patella tendon as a sleeve off the tibia, leaving the extensor mechanism intact with a lateral hinge of soft tissue. A quadriceps “snip” must be done proximally to avoid excessive tension. No patient has ever reported disruption of the extensor mechanism or decreased ability to extend the operative knee. With a mean Knee Society score of 176 (range, 95–200). Post-operative motion was 106 degrees. No patient reported pain over the tibial tubercle. The “banana peel” technique for exposing the knee during the revision TKA is a safe method that can be used along with a proximal quadriceps snip and does not violate the extensor mechanism, maintaining continuity of the knee extensors. As a last resort,
Effectiveness of Liposomal Bupivacaine for Post-Operative Pain Control in Total Knee Arthroplasty: A Prospective, Randomised, Double Blind, Controlled Study. Pericapsular Injection with Free Ropivacaine Provides Equivalent Post-Operative Analgesia as Liposomal Bupivacaine following Unicompartmental Knee Arthroplasty. Total Knee Arthroplasty in the 21st Century: Why Do They Fail? A Fifteen-Year Analysis of 11,135 Knees. Cryoneurolysis for Temporary Relief of Pain in Knee Osteoarthritis: A Multi-Center, Prospective, Double-Blind, Randomised, Controlled Trial. Pre-Operative Freezing of Sensory Nerves for Post-TKA Pain: Preliminary Results from a Prospective, Randomised, Double-Blind Controlled Trial. Proximalization of the
Following a careful in-depth preoperative plan for revision TKR, the first surgical step is adequate exposure. The following steps should be considered: 1.) Prior incisions: due to the medially based vascular supply to the skin and superficial tissues about the knee, consideration for use of the most LATERAL incision should be made. 2.) Avoid the use of flaps which may compromise the skin and soft tissue. 3.) Exposure options can be broken down into: PROXIMALLY based techniques: medial parapatella arthrotomy, establish medial and lateral gutters, eversion or subluxation of the patella, extension of arthrotomy proximal, if unable to “mobilise” patella, consider inside out lateral release, if still unable to mobilise: QUAD SNIP, in rare instances, connect lateral release with quad snip resulting in a V-Y quadplasty, may now turn down for excellent exposure. DISTALLY based techniques:
After over 4 decades of experience with total knee arthroplasty, many lessons have been learned regarding surgical technique. These include exposure issues, alignment methods, bone preparation, correction of deformity, implantation techniques and wound closure. Where is the proper placement of the skin incision relative to the tibial tubercle? How does one safely evert the patella in the obese or ankylosed knee? Can a
Success in knee revision begins in the office. The initial evaluations determine the implant design and pre-operative diagnosis. The physical examination identifies the presence of instability, stiffness, extensor mechanism malfunction and previous incisions all of which influence the planned procedure. Prior to surgery, arrangements are made to have all manner of revision implants, removal tools, and allograft material available. Removal of implants must be done with a focus on preserving bone stock and the extensor mechanism. Initial exposure involves release of the gutters, lateral subluxation of the patella and removal of the polyethylene insert. These maneuvers combined with a quadriceps snip provide exposure for implant removal in 80–90% of cases. More extensive exposure options include quadriceps turndown,