Introduction. The release of metal debris and ions has raised concerns in joint arthroplasty. In THA metal debris and ions can be generated by wear of metal-on-metal bearing surfaces and corrosion at modular taper interfaces, currently understood to be mechanically assisted crevice corrosion (MACC) [1]. More recently, inflammatory-cell induced corrosion (ICIC) has been identified as a possible source of metal debris and/or ions [2]. Although MACC has been shown to occur at modular junctions in TKA, little is known about the prevalence of other sources. The purpose of this study was to determine the sources of metallic debris and ion release in long-term implanted (in vivo > 15y) TKA femoral components. Specific attention was paid to instances of ICIC as well as damage at the implant-bone interface. Methods. 1873 retrieved TKA components were collected from 2002–2013 as part of a multi-center, IRB-approved retrieval program. Of these, 52 CoCr femoral condyles were identified as long term TKA (Average: 17.9±2.8y). These components were predominantly revised for loosening, PE wear and instability. 40/52 of the components were primary surgeries. Components were examined using optical microscopy to confirm the presence of 5 damage mechanisms (polyethylene failure, MACC corrosion of modular tapers, corrosion damage between cement and backside,
Revision of fractured ceramic-on-ceramic total hip replacements with a cobalt-chromium (CoCr) alloy-on-polyethylene articulation can facilitate metallosis and require further expensive revision surgery [1–3]. In the present study, a fifty-two year old male patient suffered from fatal cardiomyopathy after undergoing revision total hip arthroplasty. The patient had received a polyethylene-ceramic acetabular liner and a ceramic femoral head as his primary total hip replacement. The polyethylene-ceramic sandwich acetabular liner fractured in vivo after 58 months and the patient underwent his first revision surgery where he received a Vitamin E stabilized acetabular Polyethylene (PE) liner and a CoCr alloy femoral head with documented synovectomy at that time. After 15 months, the patient was admitted to hospital in cardiogenic shock, with retrieval of the bearing components. Before the second revision surgery, peak serum cobalt levels measured 6,521 μg/L, 78-times greater than serum cobalt levels of 83μg/L associated with cobalt poisoning [4]. Serum titanium levels found in the patient measured 17.5 μg/L) normal, healthy range 0–1.4 μg/L). The retrieved CoCr alloy femoral head had lost a total of 28.3g (24% or an estimated amount of 102 × 10. −9. wear particles (∼2 μm diameter) [1]) within 16 months of in vivo service. Despite initiating a cobalt chelating therapy, the patients' cardiac left ventricular ejection fraction remained reduced at 6%. This was followed by multi-organ failure, and ultimately the patient passed away shortly after being taken off life support. Embedded ceramic particles were found on the backside and articular surfaces of the Vitamin E-stabilized PE acetabular liner. Evidence of fretting wear on the titanium (Ti) alloy acetabular shell was present, possibly explaining the increased serum Ti levels. Scanning electron microscopy and energy dispersive X-ray analyses confirmed Ti alloy transfer on the embedded ceramic particles on the backside PE liner surface and CoCr alloy transfer on the embedded ceramic particles on the articular PE liner surface. A fractured ceramic-on-ceramic total hip replacement should not be revised to a CoCr alloy-on-polyethylene articulation irrespective of concurrent synovectomy [5] as it can cause severe,
Introduction. From a tribological point of view and clinical experience, a ceramic-on-ceramic bearing represents the best treatment option after rare cases of ceramic component fracture in total hip arthroplasty (THA). Fractured ceramic components potentially leave small ceramic fragments in the joint capsule which might become embedded in PE acetabular liners. Purpose. This in vitro study compared for the first time the wear behaviour of femoral ball heads made of ceramic and metal tested with PE liners in the presence of ceramic third-body debris. The contamination of the test environment with third-body ceramic debris, insertion of ceramic fragments into the PE liners and implementation of continuous subluxation simulated a worst-case scenario after revision of a fractured ceramic component. Materials and Methods. Ceramic femoral ball heads (ϕ 32 mm) made of alumina matrix composite (AMC; BIOLOX® delta, CeramTec, Germany) were tested in combination with PE and cross-linked liners and compared to metal femoral ball heads (CoCrMo) of the same diameter. All PE liners were fixed into Ti-6Al-4V metal shells by conical fixation as intended for clinical use. The tests were performed based on ISO 14242-1 utilizing a hip simulator (EndoLab, Germany). Alumina ceramic debris (BIOLOX® forte, CeramTec, Germany) of about 2 mm diameter (maximum 5 mm) were inserted into the PE liners in predefined specific points corresponding to the main load transfer area before the test. The acetabular liners were tested at an inclination of 45° in the medial-lateral plane with the specimens placed in an anatomically correct position. During the test, additional alumina ceramic debris was introduced into the articulation area as a part of the test fluid (calf serum) used in the simulator test chambers. All specimens were tested up to 5 million cycles. Damages to the surfaces of the materials were assessed visually. The wear of the femoral ball heads was measured gravimetrically. Results. High wear rates were found for metal femoral ball heads, being 1,010 times higher when compared to ceramic femoral ball heads tested with XPE liners and 560 times higher when compared to ceramic femoral ball heads tested with conventional PE liners. The conventional and crosslinked PE liners used in combination with metal femoral ball heads clearly exhibited a scratched surface, whereas the surface of the liners tested with ceramic femoral ball heads exhibited significantly less scratching. Discussion and Conclusion. This study demonstrates that apart from the recommended ceramic-on-ceramic option also ceramic-on-PE and ceramic-on-crosslinked PE bearing couples may be a viable treatment option after fracture of a ceramic component. The use of a ceramic femoral ball head after fracture of a ceramic articulation component minimizes wear and wear-related complications caused by
INTRODUCTION. Total knee arthroplasty (TKA) is typically performed using cement to secure the prosthesis to bone. There are complications associated with cementing that include intra-operative hypotension,
Introduction. Previous studies of CoCr alloy femoral components for total knee arthroplasty (TKA) have identified 3. rd. body abrasive wear, and apparent inflammatory cell induced corrosion (ICIC) [1] as potential damage mechanisms. The association between observed surface damage on the femoral condyle and metal ion release into the surrounding tissues is currently unclear. The purpose of this study was to investigate the damage on the bearing surface in TKA femoral components recovered at autopsy and compare the damage to the metal ion concentrations in the synovial fluid. Methods. 12 autopsy TKA CoCr femoral components were collected as part of a multi-institutional orthopedic implant retrieval program. The autopsy components included Depuy Synthes Sigma Mobile Bearing (n=1) and PFC (n=1), Stryker Triathlon (n=1) and Scorpio (n=3), and Zimmer Nexgen (n=4) and Natural Knee (n=2). Fluoro scans of all specimens prior to removal was carried out to assure no signs of osteolysis or aseptic loosening were present.
Introduction. Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs. Methods. 308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening.
Damage to metal-on-metal bearings (MOM) has been varyingly described as “edge