Objectives.
Introduction and Objective. Septic arthritis is an acute infective presentation of the joint calling for urgent intervention, thus making the differential diagnosis process difficult. An increase in
Thermostability is a key property in determining the suitability of local delivery of antibiotics in the treatment of orthopaedic infections. Herein, we aimed to assess the thermal stability and antibacterial activity of ciprofloxacin, ceftriaxone, gentamycine and vancomycine in high
An innovative Kirschner (K-) wire point was developed and compared in fresh pig femora in terms of drilling efficiency and
Secondary sterilisation of allograft bone by gamma irradiation is common, but the conditions under which it is performed vary between tissue banks. Some do so at room
Objectives. Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature. Methods. In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay. Results. The heat exposure mimicking curing bone cement had minimal effect on stability for most antibiotics, except for gentamicin which experienced approximately 25% degradation as measured by immunoassay. Beta-lactam antibiotics were found to degrade quite rapidly at 37°C regardless of whether there was an initial heat exposure. Excellent long-term stability was observed for aminoglycosides, glycopeptides, tetracyclines and quinolones under both conditions. Conclusions. This study provides a valuable dataset for orthopaedic surgeons considering local application of antibiotics, and for material scientists looking to develop next-generation controlled or extended-release antibiotic carriers. Cite this article: E. Samara, T. F. Moriarty, L. A. Decosterd, R. G. Richards, E. Gautier, P. Wahl. Antibiotic stability over six weeks in aqueous solution at body
Introduction. Patients with external fixators are at risk of pin site infection. A more objective assessment of possible pin site infection is warranted, particularly for future home-based monitoring of pin sites. The aim was to determine if thermography can detect signs of inflammation around pin sites by 1) Establishing a maximum
To detect early signs of infection infrared thermography has been suggested to provide quantitative information. Our vision is to invent a pin site infection thermographic surveillance tool for patients at home. A preliminary step to this goal is the aim of this study, to automate the process of locating the pin and detecting the pin sites in thermal images efficiently, exactly, and reliably for extracting pin site
According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed. Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate
Conventional 3D printing by itself is incapable of creating pores on a micro scale within deposited filaments throughout 3D scaffolds. These pores and hence larger surface areas are needed for cells to be adhered, proliferated, and differentiated. The aim of this work was to fabricate 3D polycaprolactone (PCL) scaffolds with internal multiscale porosity by using two different 3D printing techniques (ink/pellet of polymer-salt composite in low/high
Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri anesthetic hypothermia in rodents on outcomes in preclinical orthopedic device-related infection studies. A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance was used to determine the fixed effect of peri anesthetic hypothermia (hypothermic defined as rectal
Introduction and Objective. Digital infra-red thermography may have the capability of identifying local inflammations. Nevertheless, the role of thermography in diagnosing pin site infection has not been explored yet and the reliability and validity of this method for pin site surveillance is in question. The purpose of this study was to explore the capability and intra-rater reliability of thermography in detecting pin site infection. Materials and Methods. This explorative proof of concept study follows GRRAS -guidelines for reporting reliability and agreement studies. After clinical assessment of pin sites by one examiner using Modified Gordon Pin Infection Classification (Grade 0 – 6), thermographic images of the pin sites were captured with a FLIR C3 camera and analyzed by the FLIR tools software package. The maximum skin
Thermal osteonecrosis is a side effect when used Kirschner (K) wires and drills in orthopaedic surgeries. This osteonecrosis may endanger the fixation. Orthopaedic surgeons sometimes have to use unsharpened K-wires in emergent surgery. The thermal effect of used and unsharpened K wire is ambiguous to the bone. This experimental study aims to assess the thermal osteonecrosis while drilling bone with three different types of K-wires especially a previously used unsharpened wire and its thermographic measurements correlation. Two different speeds of rotation were chosen to investigate the effect of speed on thermal necrosis to the bone. A total of 16 New Zealand white rabbits weighing a mean of 2.90 kg (2.70 – 3.30 kg) were used. All rabbits were operated under general anaesthesia in a sterile operating room. Firstly, 4 cm longitudinal lateral approach was used to the right femur and then the femur was drilled with 1.0 mm trochar tip, spade tip and previously used unsharpened K-wires and 1.0 mm drill bit at 1450 rpm speed. Left femur was drilled with same three type K-wires and drill bit at 330 rpm speed. One cm distance was left among four penetrations on the femur. The thermal changes were recorded by Flir® E6 Thermal Camera from 50 cm distance and 30-degree angle. Thermographic measurements saved for every drilling process and recorded for the highest
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room
Reducing wear of endoprosthetic implants is still an important goal in order to increase the life time of the implant. Endoprosthesis failure can be caused by many different mechanisms, such as abrasive wear, corrosion, fretting or foreign body reactions due to wear accumulation. Especially, modular junctions exhibit high wear rates and corrosion due to micromotions at the connection of the individual components. The wear generation of cobalt-chromium-molybdenum alloys (CoCrMo) is strongly influenced by the microstructure. Therefore, the aim of this work is to investigate the subsurface phase transformation by deep rolling manufacturing processes in combination with a “sub-zero” cooling strategy. We analyzed the influence on the phase structure and the mechanical properties of wrought CoCr28Mo6 alloy (ISO 5832-12) by a deep rolling manufacturing process at various
Preventing infections in joint replacements is a major ongoing challenge, with limited effective clinical technologies currently available for uncemented knee and hip prostheses. This research aims to develop a coating for titanium implants, consisting of a supported lipid bilayer (SLB) encapsulating an antimicrobial agent. The SLB will be robustly tethered to the titanium using self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA). The chosen antimicrobial is Novobiocin, a coumarin-derived antibiotic known to be effective against resistant strains of Staphylococcus aureus. ODPA SAMs were deposited on TiO. 2. -coated quartz crystal microbalance (QCM) sensors using two environmentally friendly non-polar solvents (anisole and cyclopentyl methyl ether, CPME), two concentrations of ODPA (0.5mM and 1mM) and two processing
Introduction and Objective. The continued effectiveness of antibiotic loaded bone cements is threatened by antibiotic resistance. The common antiseptic, chlorhexidine (CHX), is a potential alternative to antibiotics in bone cements, but conventional salts are highly soluble, causing burst release and rapid decline to subinhibitory local CHX concentrations. Here, chlorhexidine triphosphate (CHX-TP), a low solubility CHX salt, is investigated as an alternative antimicrobial in PMMA bone cements. The aim was to assess duration of antimicrobial release and antimicrobial efficacy, along with handling, setting and mechanical properties of CHX-TP loaded cements, compared with an existing cement formulation containing gentamicin. Materials and Methods. Palacos R (Heraeus Medical, Newbury, UK) with 0, 1, 4, 7 and 12% CHX-TP (w/w) cements were prepared by combining solid CHX-TP with Palacos R components, and compared with Palacos R+G. All cements were prepared without vacuum and under ISO 5833:2002 conditions. Cements were tested under ISO 5833:2002 for compressive and bending properties, setting time, maximum
Aims. We aimed to evaluate the
Gradients of three-dimensional (3D) hierarchical tissues are common in nature and present specific architectures, as this is the case of the anisotropic subchondral bone interfaced with articular cartilage. While diverse fabrication techniques based on 3D printing, microfabrication, and microfluidics have been used to recreate tailored biomimetic tissues and their respective microenvironment, an alternative solution is still needed for improved biomimetic gradient tissues under dynamic conditions with control over pre-vasculature formation. Here, we engineered a gradient osteochondral human-based tissue with precise control over both cell/tissue phenotype and pre-vasculature formation, which opens-up possibilities for the study of complex tissues interfaces, with broader applications in drug testing and regenerative medicine. The fabrication of 3D gradients of microparticles was performed combining methacrylated gelatin (GelMA) and gellan gum (GG) (3:1, w:w ratio) with hydroxyapatite microparticles (HAp, 30% w/w). The mixing of the interface was controlled by the
Tendinopathy is a disease associated with pain and tendon degeneration, leading to a decreased range of motion and an increased risk of tendon rupture. The etiology of this frequent disease is still unknown. In other musculoskeletal tissues like cartilage and intervertebral discs, transient receptor potential channels (TRP- channels) were shown to play a major role in the progression of degeneration. Due to their responsiveness to a wide range of stimuli like