The management of periprosthetic joint infection is challenging and the duration of
A two-stage procedure was carried out on 57 patients with confirmed infection in a hip replacement. Allograft bone was used in the second stage. Pathogenic organisms were identified in all patients. In stage 1, the prosthesis was removed together with infected tissue. Antibiotics were added to customised cement beads. Systemic antibiotics were not used. At the second stage, 45 of the patients had either acetabular impaction grafting, femoral impaction grafting or a combination; 12 had a massive allograft. Eight patients suffered recurrent infection (14%), in six with the original infecting organism. The risk factors for re-infection were multiple previous procedures and highly resistant organisms. We believe that
When using a staged approach to eradicate chronic infection after total hip replacement, systemic delivery of antibiotics after the first stage is often employed for an extended period of typically six weeks together with the use of an in situ antibiotic-eluting polymethylmethacrylate interval spacer. We report our multi-surgeon experience of 43 consecutive patients (44 hips) who received systemic vancomycin for two weeks in combination with a vancomycin- and gentamicin-eluting spacer system in the course of a two-stage revision procedure for deep infection with a median follow-up of 49 months (25 to 83). The antibiotic-eluting articulating spacers fractured in six hips (13.9%) and dislocated in five patients (11.6%). Successful elimination of the infecting organisms occurred in 38 (92.7%) of 41 hips with three patients developing superinfection with a new organism. We conclude that prolonged
Based on the first implementation of mixing antibiotics
into bone cement in the 1970s, the Endo-Klinik has used one stage
exchange for prosthetic joint infection (PJI) in over 85% of cases.
Looking carefully at current literature and guidelines for PJI treatment,
there is no clear evidence that a two stage procedure has a higher
success rate than a one-stage approach. A cemented one-stage exchange
potentially offers certain advantages, mainly based on the need
for only one operative procedure, reduced antibiotics and hospitalisation time.
In order to fulfill a one-stage approach, there are obligatory pre-,
peri- and post-operative details that need to be meticulously respected,
and are described in detail. Essential pre-operative diagnostic
testing is based on the joint aspiration with an exact identification
of any bacteria. The presence of a positive bacterial culture and
respective antibiogram are essential, to specify the antibiotics
to be loaded to the bone cement, which allows a high local antibiotic
elution directly at the surgical side. A specific antibiotic treatment
plan is generated by a microbiologist. The surgical success relies
on the complete removal of all pre-existing hardware, including
cement and restrictors and an aggressive and complete debridement
of any infected soft tissues and bone material. Post-operative systemic
antibiotic administration is usually completed after only ten to
14 days. Cite this article:
Infection of a total hip replacement (THR) requires component removal and thorough local debridement. Usually, long-term antibiotic treatment in conjunction with a two-stage revision is required. This may take several months. One-stage revision using antibiotic-loaded cement has not gained widespread use, although the clinical and economic advantages are obvious. Allograft bone may be impregnated with high levels of antibiotics, and in revision of infected THR, act as a carrier providing a sustained high local concentration. We performed 37 one-stage revision of infected THRs, without the use of cement. There were three hips which required further revision because of recurrent infection, the remaining 34 hips (92%) stayed free from infection and stable at a mean follow-up of 4.4 years (2 to 8). No adverse effects were identified. Incorporation of bone graft was comparable with unimpregnated grafts. Antibiotic-impregnated allograft bone may enable reconstruction of bone stock, insertion of an uncemented implant and control of infection in a single operation in revision THR for infection.
Migration of the acetabular component may give rise to oval-shaped bone defects in the acetabulum. The oblong implant is designed to fill these defects and achieve a stable cementless anchorage with no significant bone loss. We prospectively reviewed 133 oblong long oblique revision components at a mean follow-up of 9.74 years (0.6 to 14). All had been used in revisions for defects of type IIB to IIIB according to Paprosky. Aseptic loosening was the reason for revision in 11 cases (8.3%) and deep infection in seven (5.3%). The probability of implant survival over a 12-year follow-up estimated by the Kaplan-Meier method gave a survival rate of 0.85% respectively 0.90% when deep infection was excluded as the endpoint. Our study supports the use of these components in defects from IIB to IIIA. The main precondition for success is direct contact of more than half of the surface of the implant with the host acetabular bone.
Bone allografts can store and release high levels of vancomycin. We present our results of a two-stage treatment for infected hip arthroplasty with acetabular and femoral impaction grafting using vancomycin-loaded allografts. We treated 29 patients (30 hips) by removal of the implants, meticulous debridement, parenteral antibiotic therapy and second-stage reconstruction using vancomycin-supplemented impacted bone allografts and a standard cemented Charnley femoral component. The mean follow-up was 32.4 months (24 to 60). Infection control was obtained in 29 cases (re-infection rate of 3.3%; 95% confidence interval 0.08 to 17) without evidence of progressive radiolucent lines, demarcation or graft resorption. One patient had a further infection ten months after revision caused by a different pathogen. Associated post-operative complications were one traumatic periprosthetic fracture at 14 months, a single dislocation in two hips and four displacements of the greater trochanter. Vancomycin-supplemented allografts restored bone stock and provided sound fixation with a low incidence of further infection.