Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 22 - 22
11 Apr 2023
Sun Y
Full Access

To analyze the effect of tooth extraction site preservation on bone mineral density 6 months after surgery. From 2020 to 2021, two adjacent teeth (37, 38) of the same patient were extracted at the same time, and then 37 were selected for site preservation, implanted with Bio-oss bone powder, covered with double Bio-gide membrane, reduce tension and sutured. After 6 months of self-healing, 38 was taken CBCT, and the gray value measurement tool in the software was used to measure the bone mineral density of 37 bone graft areas and 38 extraction sockets. Bone density was high in the center of the bone graft area after the extraction site, and the density decreased in the adjacent alveolar socket, but the gray value was still higher than 38 for natural healing. Extraction site surgery can improve bone mass and quality at the extraction site. It is good for implanting


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 102 - 102
1 Mar 2021
Tazawa R Minehara H Matsuura T Kawamura T Uchida K Inoue G Saito W Takaso M
Full Access

Segmental bone transport (SBT) using an external fixator is currently a standard treatment for large-diameter bone defects at the donor site with low morbidity. However, long-term application of the device is needed for bone healing. In addition, patients who received SBT treatment sometimes fail to show bone repair and union at the docking site, and require secondary surgery. The objective of this study was to investigate whether a single injection of recombinant human bone morphogenetic protein 2 (rhBMP-2)-loaded artificial collagen-like peptide gel (rhBMP-2/ACG) accelerates consolidation and bone union at the docking site in a mouse SBT model. Six-month-old C57BL/6J mice were reconstructed by SBT with external fixator that has transport unit, and a 2.0-mm bone defect was created in the right femur. Mice were divided randomly into four treatment groups with eight mice in each group, Group CONT (immobile control), Group 0.2mm/d, Group 1.0mm/d, and Group BMP-2. Mice in Group 0.2mm/d and 1.0mm/d, bone segment was moved 0.2 mm per day for 10 days and 1.0 mm per day for 2 days, respectively. Mice in Group BMP-2 received an injection of 2.0 μg of rhBMP-2 dissolved in ACG into the bone defect site immediately after the defect-creating surgery and the bone segment was moved 1.0 mm/day for 2 days. All animals were sacrificed at eight weeks after surgery. Consolidation at bone defect site and bone union at docking site were evaluated radiologically and histologically. At the bone defect site, seven of eight mice in Group 0.2mm/d and two of eight mice in Group 1.0mm/d showed bone union. In contrast, all mice in Group CONT showed non-union at the bone defect site. At the docking site, four of eight mice in Group 0.2 mm/d and three of eight mice in Group 1.0 mm/d showed non-union. Meanwhile, all mice in Group BMP-2 showed bone union at the bone defect and docking sites. Bone volume and bone mineral content were significantly higher in Group 0.2mm/d and Group BMP-2 than in Group CONT. HE staining of tissue from Group 0.2mm/d and Group BMP-2 showed large amounts of longitudinal trabecular bone and regenerative new bone at eight weeks after surgery at the bone defect site. Meanwhile, in Group CONT and Group 1.0mm/d, maturation of regenerative bone at the bone defect site was poor. Differences between groups were analyzed using one-way ANOVA and a subsequent Bonferroni's post-hoc comparisons test. P < 0.05 was considered significant. rhBMP-2/ACG combined with SBT may be effective for enhancing bone healing in large bone defects without the need for secondary procedures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 94 - 94
1 Nov 2021
Chen Y Lian W Wang F
Full Access

Introduction and Objective. Senescent bone cell overburden accelerates osteoporosis. Epigenetic alteration, including microRNA signalling and DND methylation, is one of prominent features of cellular senescence. This study aimed to investigate what role microRNA-29a signalling may play in the development of senile osteoporosis. Materials and Methods. Bone biopsy and serum were harvested from 13 young patients and 15 senior patients who required spine surgery. Bone mass, microstructure, and biomechanics of miR-29a knockout mice (miR-29aKO) and miR-29a transgenic mice (miR-29aTg) were probed using mCT imaging and three-point bending material test. Senescent cells were probed using senescence-associated b-galactosidase (SA-b-gal) staining. Transcriptomic landscapes of osteoblasts were characterized using whole genome microarray and KEGG bioinformatics. miR-29a and senescence markers p16. INK4a. , p21. Waf/cipl. and inflammatory cytokines were quantified using RT-PCR. DNA methylome was probed using methylation-specific PCR and 5-methylcytosine immunoblotting. Results. Senescent osteoblast overburden, DNA hypermethylation and oxidative damage together with significant decreases in serum miR-29a levels were present in bone specimens of aged patients. miR-29aKO mice showed a phenotype of skeletal underdevelopment, low bone mineral density and weak biomechanics. miR-29a knockout worsened age-induced bone mass and microstructure deterioration. Of note, aged miR-29aTg mice showed less bone loss and fatty marrow than aged wild-type mice. Transgenic overexpression of miR-29s compromised age-dysregulated osteogenic differentiation capacity of bone-marrow mesenchymal cells. In vitro, miR-29a promoted transcriptomic landscapes of antioxidant proteins in osteoblasts. The microRNA interrupted DNA methyltransferase (Dnmt3b)-mediated DNA methylation, inhibiting reactive oxygen radicals burst, IL-6 and RANKL production, and a plethora of senescent activity, including increased p16. INK4a. , p21. Waf/cipl. signalling and SA-b-gal activity. Conclusions. miR-29a loss is correlated with human age-mediated osteoporosis. miR-29a signalling is indispensable in bone mase homeostasis and microstructure integrity. Gain of miR-29a function is advantageous to delay age-induced bone loss through promoting antioxidant proteins to inhibit DNA hypermethylation-mediated osteoblast senescence. Collective investigations shine light onto the anabolic effects miR-29a signalling to bone integrity and highlight a new epigenetic protection strategy through controlling microRNA signalling to delay osteoblast senescence and senile osteoporosis development


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 91 - 91
1 Apr 2018
Bundkirchen K Macke C Reifenrath J Angrisani N Schäck LM Noack S Welke B Krettek C Neunaber C
Full Access

Purpose. In patients with multiple trauma delayed fracture healing is often diagnosed, but the pathomechanisms are not well known yet. The purpose of the study is to evaluate the effect of a severe hemorrhagic shock on fracture healing in a murine model. Methods. 10 male C57BL/6N mice per group (Fx, TH, THFx, Sham) and point in time were used. The Fx-group received an osteotomy after implantation of a fixateur extern. The TH-group got a pressure controlled hemorrhagic shock with a mean arterial blood pressure of 35 mmHg over 90 minutes. Resuscitation with 4 times the shed blood volume of Ringer solution was performed. The THFx group got both. Sham-animals received the implantation of a catheter and a fixateur extern but no blood loss or osteotomy. After 1, 2, 3, 4 or 6 weeks the animals were sacrificed. For the biomechanics the bones were analyzed via X-ray, µCT and underwent a 3-point bending test. The nondecalcified histology based on slices of Technovit 9100. The signaling pathway was analyzed via RT. 2. Profiler™ PCR Array Mouse Osteoporosis, Western Blot and Quantikine ELISA for RankL and OPG. Statistical significance was set at p < 0.05. Comparisons between groups were performed using the Mann–Whitney U (Fx vs. THFx) or Kruskal-Wallis Test (other groups). Results. The experiment showed that after 1 week the bones of the Fx- and THFx-mice were macroscopically instable. After 2 weeks the Fx-group showed macroscopically a stable bridging whereas the bones of the THFx-group were partly not stable bridged. 3 weeks after surgery the bones of both groups were stable bridged. Analysis via µCT showed that trauma hemorrhage leads to decreased density of the bone and callus and also to increased share of callus per bone volume after 2 weeks. The 3-point-bending test showed that the maximum bending moment is decreased in the group THFx compared to Fx after 2 weeks. The studies of the histology showed after 2 weeks a decrease in bone and cartilage after trauma-hemorrhage by optical analysis of photographs of the slices. The analyses of the signaling pathway pointed to an involvement of the RankL/Opg and IL6 pathway. Conclusion. A hemorrhagic shock has a negative effect on fracture healing in terms of reduced density of the bone and callus, increased share of callus per bone volume, decreased maximum bending moment, reduced mineralization of the callus and leads to changes in the RankL/Opg and IL6 pathways


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 96 - 96
1 Jan 2017
Thorrez L Putzeys G Duportail C Croes K Boudewijns M
Full Access

To prevent infections after orthopedic surgery, intravenous antibiotics are administered perioperatively. Cefazolin is widely used as the prophylactic antibiotic of choice. Systemic antibiotic therapy may however be less effective in longstanding surgery where bone allografts are used. Bone chips have been shown to be an effective carrier for certain types of antibiotics. Bone allografts impregnated with antibiotics may therefore provide the necessary local antibiotic levels for prophylaxis. To be efficient, a prolonged release from these bonechips is required. In contrast to vancomycin, for which prolonged release has clearly been proven effective from Osteomycin®, a commercially available impregnated bone allograft, no prolonged release bone chip preparations have been described so far for cefazolin. We developed a protocol to bind cefazolin in the porous structure of bone chips by means of a hydrogel composed of proteins naturally present in the human body. Three types of bone chips were evaluated: fresh frozen, decellularized frozen and decellularized lyophilized. Bone chips were incubated with 20 mg/ml cefazolin or treated with liquid hydrogel containing either 1 mg/ml fibrin or 1 mg/ml collagen and 20 mg/ml cefazolin. The cefazolin hydrogel was distributed in the porous structure by short vacuum treatment. Bone chips with cefazolin but without hydrogel were either incubated for 20 min- 4h or also treated with vacuum. Cefazolin elution of bone chips was carried out in fetal bovine serum and analyzed by Ultra Performance Liquid Chromatography – Diode Array Detection. Soaking of bone chips without hydrogel resulted in a quick release of cefazolin, which was limited to 4 hours. When vacuum was applied elution of >1 µg/ml cefazolin was measured for up to 36 hours. Combination with collagen hydrogel resulted in a higher cefazolin concentration released at 24 hours (3.9 vs 0.3 µg/ml), but not in a prolonged release. However, combination of decellularized frozen bone chips with fibrin hydrogel resulted in an initial release of 533 µg/ml followed by a gradual decline reaching the minimal inhibitory concentration for S. aureus at 72 hours (1.7 µg/ml), while not measurable anymore after 92 hours. Processed bone chips with hydrogel-cefazolin showed a markedly prolonged cefazolin release. When combined with a fibrin hydrogel, high initial peak levels of cefazolin were obtained, followed by a decreasing release over the following three days. This elution profile is desirable, since high initial levels are important to maximize anti-bacterial action whereas low levels of antibiotic for a limited time may stimulate osteogenesis. It is important that antibiotic release is ending after a few days as prolonged low levels of antibiotics are not clinically helpful and may lead to antibiotic resistance. Further preclinical studies are warranted to show effectiveness of hydrogel-cefazolin impregnated bone chips


Little is known on how sensory nerves and osteoclasts affect degenerative processes in subchondral bone in osteoarthritis (OA). Substance P (SP) effects on bone are ambivalent but physiological levels are critical for proper bone quality whereas α-calcitonin gene-related peptide (αCGRP) has anabolic effects. Here, we aimed to analyse the influence of an altered sensory neuropeptide microenvironment on subchondral bone in murine OA. Transection of the medial meniscotibial ligament (DMM) of the right hind leg induced joint instability leading to development of OA. Subchondral bone of tibiae from wildtype (WT), alendronate-treated WT (ALN, osteoclast inhibition), αCGRP- and SP- (Tachykinin (Tac)1) knockout mice was analysed by micro-computed tomography 4 and 12 weeks after DMM or sham surgery. Bone resorption marker CTX-I was measured in serum. We observed osteophytosis in all DMM groups and ALN sham mice 4 weeks after surgery but also in sham groups 12 weeks after surgery. In subchondral bone, bone volume density (BV/TV) increased from 4 to 12 weeks after surgery in DMM WT and Tac1-/− mice. DMM WT mice additionally had increased trabecular numbers (Tb.N.) and decreased trabecular space (Tb.Sp.) over time. Sham mice also showed time-dependent alterations in subchondral bone. In sham WT and αCGRP-/− mice specific bone surface (BS/BV) decreased and trabecular thickness (Tb.Th.) increased from 4 to 12 weeks after surgery while subchondral BV/TV of αCGRP-/− mice increased. Comparison of subchondral bone parameters at each time point showed elevated BV/TV in ALN DMM compared to WT DMM mice 4 weeks after surgery. In addition, both ALN sham and DMM mice showed a reduced BS/BV compared to WT. 4 weeks after sham surgery Tb.Th. was highest in ALN mice. In DMM WT mice Tb.Sp. was higher compared to ALN and αCGRP-/−. 12 weeks after surgery (late OA stage), BS/BV of ALN sham mice was significantly reduced in relation to ALN DMM, WT and Tac1-/− sham, while Tb.Th. increased compared to WT. DMM significantly decreased Tb.N. and increased Tb.Sp. in Tac1-/− compared to sham 12 weeks after surgery. CTX-I concentrations were significantly higher in ALN compared to Tac1-/− mice 4 weeks after sham surgery. 12 weeks after sham surgery CTX-I concentrations of WT mice were increased compared to αCGRP-/− and Tac1-/− mice. Over time, DMM induced stronger changes in subchondral bone of WT mice compared to knockout strains. WT and αCGRP-/− sham mice also show alterations in bone parameters over time indicating age-related effects on bone structure. SP deficiency enhanced DMM-induced structural bone alterations in late stage OA emphasizing the importance of SP under pathophysiological conditions. Osteoclast inhibition with alendronate proved to be preservative for time-dependent changes of subchondral bone observed in both, DMM and sham mice. Interestingly, ALN treatment did not reduce bone turnover marker CTX-I, and additionally promoted early osteophyte formation in sham mice


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives

We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model.

Methods

We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.


Bone & Joint Research
Vol. 5, Issue 3 | Pages 95 - 100
1 Mar 2016
Pilge H Fröbel J Prodinger PM Mrotzek SJ Fischer JC Zilkens C Bittersohl B Krauspe R

Objectives

Venous thromboembolism (VTE) is a major potential complication following orthopaedic surgery. Subcutaneously administered enoxaparin has been used as the benchmark to reduce the incidence of VTE. However, concerns have been raised regarding the long-term administration of enoxaparin and its possible negative effects on bone healing and bone density with an increase of the risk of osteoporotic fractures. New oral anticoagulants such as rivaroxaban have recently been introduced, however, there is a lack of information regarding how these drugs affect bone metabolism and post-operative bone healing.

Methods

We measured the migration and proliferation capacity of mesenchymal stem cells (MSCs) under enoxaparin or rivaroxaban treatment for three consecutive weeks, and evaluated effects on MSC mRNA expression of markers for stress and osteogenic differentiation.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1670 - 1674
1 Dec 2006
Rogers BA Murphy CL Cannon SR Briggs TWR

The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage.

Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired t-test.

Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02).

We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue.