Background: Joint replacements are being performed on ever younger patients at a time when average expectancy of life is continuing to rise. Any reduction in the strength and mass of periprosthetic bone could threaten the longevity of implant by predisposing to loosening and migration of prosthesis, periprosthetic fracture and problems in revision arthroplasty. Aims &
Objectives: This study aims to analyse and compare prospectively the femoral periprosthetic
Aims. It has been hypothesized that proximal radial neck resorption (PRNR) following press-fit radial head arthroplasty (RHA) is due to
Background: Joint replacements are being performed on ever younger patients at a time when average expectancy of life is continuing to rise. Any reduction in the strength and mass of periprosthetic bone could threaten the longevity of implant by predisposing to loosening and migration of prosthesis, periprosthetic fracture and problems in revision arthroplasty. Aims &
Objectives: This study aims to analyse the femoral periprosthetic
Background: Joint replacements are being performed on ever younger patients at a time when average expectancy of life is continuing to rise. Any reduction in the strength and mass of periprosthetic bone could threaten the longevity of implant by predisposing to loosening and migration of prosthesis, periprosthetic fracture and problems in revision arthroplasty. Aims &
Objectives: This study aims to analyse and compare prospectively the femoral periprosthetic
The aim of this study was to analyze how proximal radial neck resorption (PRNR) starts and progresses radiologically in two types of press-fit radial head arthroplasties (RHAs), and to investigate its clinical relevance. A total of 97 patients with RHA were analyzed: 56 received a bipolar RHA (Group 1) while 41 received an anatomical implant (Group 2). Radiographs were performed postoperatively and after three, six, nine, and 12 weeks, six, nine, 12, 18, and 24 months, and annually thereafter. PRNR was measured in all radiographs in the four radial neck quadrants. The Mayo Elbow Performance Score (MEPS), the abbreviated version of the Disabilities of the Arm, Shoulder, and Hand questionnaire (QuickDASH), and the patient-assessed American Shoulder and Elbow Surgeons score - Elbow (pASES-E) were used for the clinical assessment. Radiological signs of implant loosening were investigated.Aims
Methods
Background: Joint replacements are being performed on ever younger patients at a time when average expectancy of life is continuing to rise. Any reduction in the strength and mass of periprosthetic bone could threaten the longevity of implant by predisposing to loosening and migration of prosthesis, periprosthetic fracture and problems in revision arthroplasty. Aims and Objectives: This study aims to analyse and compare prospectively the femoral periprosthetic
Background: Joint replacements are being performed on ever younger patients at a time when average expectancy of life is continuing to rise. Any reduction in the strength and mass of periprosthetic bone could threaten the longevity of implant by predisposing to loosening and migration of prosthesis, periprosthetic fracture and problems in revision arthroplasty. Aims &
Objectives: This study aims to analyse the femoral periprosthetic
Introduction. Osteloysis following metal-on-UHMW polyethylene Total Hip Arthroplasty (THA) is well reported, as is lack of osteolysis following Ceramic-on-Ceramic (CoC)THA. Early ceramic failures did report some osteolysis, but in flawed implants. As 3rd and now 4th generation ceramic THAs come into mid- and long-term use, the orthopaedic community has begun to see reports of high survival rates and very low incidence of osteolysis in these bearings. Osteolysis reported after 3rd generation CoC THA often included metallosis due to neck rim impingement. In our department we have revised only 2 hips in over 6000 CoC THAs for osteolysis. Both had evidence of metallosis as well as ceramic wear. The technique used by Radiologists for identifying the nature of lesions on CT is the Hounsfield score which will identify the density of the tissue within the lucent area. It is common for radiologist to have no access to previous imaging, especially pre-operative imaging if a long time has elapsed. With such a low incidence of osteolysis in this patient group, what, then, should a surgeon do on receiving a CT report on a ceramic-on-ceramic THA which states there is osteolysis? Revision of such implants in elderly patients has a high risk of morbidity and mortality. Objectives. This retrospective review aims to determine the accuracy of CT in identifying true osteolysis in a cohort of long-term third generation ceramic-on-ceramic uncemented hip arthroplasties in our department. Methods. Pelvic CT scans were performed on the first 27 patients from a cohort of 301 patients undergoing 15 year review with 3rd generation alumina-alumina cementless THAs. The average follow-up was 15 years (15–17). The CT scans were reviewed against pre-operative and post-operative radiographs and reviewed by a second musculoskeletal specialist radiologist. Results. Eleven of the CTscans were reported to show acetabular osteolysis, two reported osteolysis or possible pre-existing cyst and one reported a definitive pre-existing cyst. After review of previous imaging including pre-operative radiographs, eleven of the thirteen patients initially reported to have osteolysis were found to have pre-existing cysts or geodes in the same size and position as the reported osteolysis, and a further patient had spot-welds with
Aim:
Revision surgery of the hip was performed on 114 hips using an extensively porous-coated femoral component. Of these, 95 hips (94 patients) had a mean follow-up of 10.2 years (5 to 17). No cortical struts were used and the cortical index and the femoral cortical width were measured at different levels. There were two revisions for aseptic loosening. Survivorship at 12 years for all causes of failure was 96.9% (95% confidence interval 93.5 to 100) in the best-case scenario. Fibrous or unstable fixation was associated with major bone defects. The cortical index (p = 0.045) and the lateral cortical thickness (p = 0.008) decreased at the proximal level over time while the medial cortex increased (p = 0.001) at the proximal and distal levels. An increase in the proximal medial cortex was found in patients with an extended transtrochanteric osteotomy (p = 0.026) and in those with components shorter than 25 cm (p = 0.008). The use of the extensively porous-coated femoral component can provide a solution for difficult cases in revision surgery. Radiological bony ingrowth is common. Although without clinical relevance at the end of follow-up, the thickness of the medial femoral cortex often increased while that of the lateral cortex decreased. In cases in which a shorter component was used and in those undertaken using an extended trochanteric osteotomy, there was a greater increase in thickness of the femoral cortex over time.
Aims. This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). Methods. 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed. Results. The distance from the distal stem tip to the shortest cortical bone showed no statistically significant difference between implants. However, the peak von Mises stress around the distal stem tip was higher with STC than with ATC. In the medial half of the proximal tibial bone: 1) the mean von Mises stress, maximum principal strain, and minimum principal strain were higher with ATC; 2) ATC showed a positive correlation between the distance and mean von Mises stress; 3) ATC showed a negative correlation between the distance and mean minimum principal strain; and 4) STC showed no correlation between the distance and mean measurements. Conclusion. Implant design affects the load distribution on the periprosthetic tibial bone, and ATC can be more advantageous in preventing
The October 2023 Shoulder & Elbow Roundup. 360. looks at: Arthroscopic capsular shift surgery in patients with atraumatic shoulder joint instability: a randomized, placebo-controlled trial; Superior capsular reconstruction partially restores native glenohumeral loads in a dynamic model; Gene expression in glenoid articular cartilage varies in acute instability, chronic instability, and osteoarthritis; Intra-articular injection versus interscalene brachial plexus block for acute-phase postoperative pain management after arthroscopic shoulder surgery; Level of pain catastrophizing rehab in subacromial impingement: secondary analyses from a pragmatic randomized controlled trial (the SExSI Trial); Anterosuperior versus deltopectoral approach for primary reverse total shoulder arthroplasty: a study of 3,902 cases from the Dutch National Arthroplasty Registry with a minimum follow-up of five years; Assessment of progression and clinical relevance of
Aims. The aim of this study was to compare the mid-term patient-reported outcome, bone remodelling, and migration of a short stem (Collum Femoris Preserving; CFP) with a conventional uncemented stem (Corail). Methods. Of 81 patients who were initially enrolled, 71 were available at five years’ follow-up. The outcomes at two years have previously been reported. The primary outcome measure was the clinical result assessed using the Oxford Hip Score (OHS). Secondary outcomes were the migration of the stem, measured using radiostereometric analysis (RSA), change of bone mineral density (BMD) around the stem, the development of radiolucent lines, and additional patient-reported outcome measures (PROMs). Results. There were no statistically significant differences between the groups regarding PROMs (median OHS (CFP 45 (interquartile range (IQR) 35 to 48); Corail 45 (IQR 40 to 48); p = 0.568). RSA showed stable stems in both groups, with little or no further subsidence between two and five years. Resorption of the femoral neck was evident in nine patients in the CFP group and in none of the 15 Corail stems with a collar that could be studied. Dual X-ray absorbiometry showed a significantly higher loss of BMD in the proximal Gruen zones in the CFP group (mean changes in BMD: Gruen zone 1, CFP -9.5 (95% confidence interval (CI) -14.8 to -4.2), Corail 1.0 (95% CI 3.4 to 5.4); Gruen zone 7, CFP -23.0 (95% CI -29.4 to -16.6), Corail -7.2 (95% CI -15.9 to 1.4). Two CFP stems were revised before two years’ follow-up due to loosening, and one Corail stem was revised after two years due to chronic infection. Conclusion. The CFP stem has a similar clinical outcome and subsidence pattern when compared with the Corail stem. More pronounced proximal
According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the
Revision surgeries for orthopaedic infections are done in two stages – one surgery to implant an antibiotic spacer to clear the infection and another to install a permanent implant. A permanent porous implant, that can be loaded with antibiotics and allow for single-stage revision surgery, will benefit patients and save healthcare resources. Gyroid structures can be constructed with high porosity, without stress concentrations that can develop in other period porous structures [1] [2]. The purpose of this research is to compare the resulting bone and prosthesis stress distributions when porous versus solid stems are implanted into three proximal humeri with varying bone densities, using finite element models (FEM). Porous humeral stems were constructed in a gyroid structure at porosities of 60%, 70%, and 80% using computer-aided design (CAD) software. These CAD models were analyzed using FEM (Abaqus) to look at the stress distributions within the proximal humerus and the stem components with loads and boundary conditions representing the arm actively maintained at 120˚ of flexion. The stem was assumed to be made of titanium (Ti6Al4V). Three different bone densities were investigated, representing a healthy, an osteopenic, and an osteoporotic humerus, with an average bone shape created using a statistical shape and density model (SSDM) based on 75 cadaveric shoulders (57 males and 18 females, 73 12 years) [3]. The Young's moduli (E) of the cortical and trabecular bones were defined on an element-by-element basis, with a minimum allowable E of 15 MPa. The Von Mises stress distributions in the bone and the stems were compared between different stem scenarios for each bone density model. A preliminary analysis shows an increase in stress values at the proximal-lateral region of the humerus when using the porous stems compared to the solid stem, which becomes more prominent as bone density decreases. With the exception of a few mesh dependent singularities, all three porous stems show stress distributions below the fatigue strength of Ti-6Al-4V (410 MPa) for this loading scenario when employed in the osteopenic and osteoporotic humeri [4]. The 80% porosity stem had a single strut exceeding the fatigue strength when employed in the healthy bone. The results of this study indicate that the more compliant nature of the porous stem geometries may allow for better load transmission through the proximal humeral bone, better matching the stress distributions of the intact bone and possibly mitigating
Shoulder arthroplasty is effective at restoring function and relieving pain in patients suffering from glenohumeral arthritis; however, cortex thinning has been significantly associated with larger press-fit stems (fill ratio = 0.57 vs 0.48; P = 0.013)1. Additionally, excessively stiff implant-bone constructs are considered undesirable, as high initial stiffness of rigid fracture fixation implants has been related to premature loosening and an ultimate failure of the implant-bone interface2. Consequently, one objective which has driven the evolution of humeral stem design has been the reduction of
Introduction. In total hip arthroplasty, press-fit anchorage is one of the most common fixation methods for acetabular cups and mostly ensures sufficient primary stability. Nevertheless, implants may fail due to aseptic loosening over time, especially when the surrounding bone is affected by
The skeletal system exhibits functional adaptation. For bone the mechanotransduction mechanisms have been well elucidated; in contrast, the response of tendon to its mechanical environment is much more poorly understood despite tendon disorders being commonly encountered in clinical practice. This study presents a novel approach to developing an isolated tendon system in vivo. This model is used to test the hypothesis that
Background: Poor results were observed at medium term follow-up (FU) after first and second generation cementless stems implantation in total hip arthroplasty (THA). Revision rate up to 24% is reported with anatomic stems;