Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 118 - 118
1 Nov 2021
Pareatumbee P Yew A Koh JSB Howe TS Abidin SZ Tan MH
Full Access

Introduction and Objective. Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling. Methods. Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the glenohumeral joint fixed and with all contact interfaces defined as fully bonded. A comparative analysis against literature was performed to validate the intact model. Statistical analysis of the peak von Mises stress values collected from predicted stress contour plots was performed using a one-way repeated measure of analysis of variance (with a Bonferroni post hoc test) using SPSS Statistics 26. The average change in stress of the resected models from the intact state were then determined. Results. The validation of the intact humerus displayed a good agreement with literature values. The peak bone stress occurred distally above the coronoid and olecranon fossa closer to the load application region in the intact and resected bone models with a significant amount of loading borne by the cortical bone, while the peak implant stress occurred at the bone-prosthesis contact interface under both loading conditions. Based on the results obtained, a statistically significant difference (p =.013) in implant stress was only seen to occur between groups B and C under tension. Results illustrate initiation of stress shielding with the bone bearing lesser stress with increasing resection length which may eventually lead to implant failure by causing bone resorption according to Wolff's law. The peak implant stress under torsion was 3–5 times the stress under tension. The best biomechanical behaviour was exhibited in Group D, having the least average change in stress from the intact model, 5% and 3.8% under tension and torsion respectively. It can be deduced that the shorter the prosthesis length, the more pronounced the effect on cortical bone remodelling. With the maximum bone and implant stresses obtained being less than their yield strength, it can be concluded that the bone-implant construct is safe from failure. Conclusions. The developed FE models verified the influence of varying the prosthesis length on the bone and implant stresses and predicted signs of stress shielding in longer endoprostheses. By allowing for 2 cm shortening in the upper extremity and post-surgical scarring, it is beneficial to err towards a shorter endoprosthesis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 96 - 96
1 Nov 2021
Facchini A Ghezzi R Troiano E Giacchè T Cacioppo M Mondanelli N Giannotti S
Full Access

Introduction and Objective. Some periprosthetic femoral fractures (PFFs) present history and radiographic aspect consistent with an atypical femoral fracture (AFF), fulfilling the criteria for AFF except that PFFs by themselves are excluded from the diagnosis of AFFs. The aim of this study was to evaluate in a single Institution series of PFFs if any of them could be considered a periprosthetic atypical femoral fracture (PAFF), and their prevalence. Materials and Methods. Surgical records were searched for PFFs around a primary hip stem from January 2013 to December 2019. Cases were classified according to Vancouver classification. Demographic and medical history were extracted. Fisher's exact test was used for statistical analysis. Results. One-hundred-fifteen PFFs were identified, 59 of them were type B1 and 16 were type C. Radiographs and medical records were available for all patients. Twenty-four patients (32%) have been treated with bisphosphonates (BPs) for longer than 4 years. Four patients presented a fracture with characteristics of PAFF. When enlarged to all PFFs of the series, no other PAFF was found: prevalence of PAFFs was 5.3% for type B1 and C cases and 3.5% for all surgically treated PFFs. Statistical significative difference between PAFFs and PFFs was found for prolonged BPs assumption and for the level of fracture clear of the stem. Conclusions. Fracture with characteristics of AFFs can also happen over a prosthetic stem, configuring themselves as PAFFs, and they are related to prolonged BPs use. As a correct diagnosis is mandatory for proper treatment, a revision of criteria for AFFs should be considered, accepting that PAFFs exist


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 8 - 8
1 Aug 2013
Shaw C Badhesha J Ayana G Abu-Rajab R
Full Access

The Exeter Stem (Howmedica, UK) has been in use for over 35 years. Over the years it has undergone several modifications with the most recent being a highly polished, tapered stem in 1986. The manufacturers quote a rate of 0.0006%. In the current literature there are 16 (or less) instances of fractures of the Orthinox stem. We present a case of fracture of an Orthinox Exeter Stem 9 years after insertion. Our patient, BB, presented, aged 62, with symptoms & signs consistent with OA right hip. THR was performed through a lateral approach utilising a trochanteric osteotomy. A size 0 37.5 stem was inserted. Radiographs were very satisfactory. She suffered a post operative DVT/PTE from which she recovered uneventfully. She was independently mobile at 6 month review and was discharged at the 2 year stage pain free. Aged 71, BB presented to outpatient clinic with a several month history of generalised groin pain. She had a Trendelenberg gait. Considerable pain was experienced on axial compression of the limb. Radiographs revealed a midstem fracture with cement loosening proximally. No trauma was reported. She underwent revision surgery through a posterior approach. Acetabular component was rigidly fixed. This was revised to a pressfit Trident (Zimmer, UK) cup with screws & polyethylene liner. An extended trochanteric osteotomy was used to remove the broken stem. An uncemented Restoration (Stryker, UK) stem was inserted with a 28mm head. Post-operative recovery was unremarkable and at 6 months osteotomy has healed. The stem was sent to Stryker UK Laboratories for analysis. They reported the stem broke in fatigue with the origin on the antero-lateral surface. No material or manufacturing defects seen. Dimensionally correct. Fracture may be due to abnormal bending stresses secondary to proximal loosening and firm distal fixation. Our case demonstrates a set of circumstances that led to inevitable fatigue and stem fracture. The method of failure should reinforce the radiograph appearances that may cause concern or be acted upon