Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 25 - 25
1 Oct 2018
Geller JA Sarpong NO Grosso M Lakra A Jennings E Heller MS Shah RP Cooper HJ
Full Access

Introduction. The success of total knee arthroplasty (TKA) necessitates precise osteotomies and soft tissue balancing to realign the lower extremity to a neutral mechanical axis. While technological advances have facilitated precise osteotomies, soft tissue balancing has traditionally relied mostly on surgeons’ subjective and variable tactile feedback. As soft tissue imbalance accounts for 35% of early TKA revisions in North America, we aimed to compare outcomes when TKA was balanced free-hand versus a sensor-guided balancing device (VERASENSE, OrthoSensor, Inc (Dania, FL)). Methods. In a randomized-controlled fashion, patients underwent primary TKA soft tissue balancing either free-hand or with VERASENSE (Orthosensor Inc, Dania FL) at our institution beginning January 2018. With VERASENSE, soft-tissue balancing is considered when the pressure difference between the medial and lateral knee compartments was less than 15 pounds. Data regarding patient-reported outcomes, knee range of motion (ROM), pain level, opioid consumption, inpatient ambulation distance, length of stay (LOS), and incidence of arthrofibrosis was collected and analyzed in a two-year minimum follow-up and target patient goal of 120 patients. Results. The study cohort thus far consists of 53 patients, average age 72.4 ± 8.8 years. Soft-tissue balance was conducted freehand in 23 patients and the VERASENSE was used in 30 patients. In the free-hand cohort, preoperative patient-reported outcomes for SF-12 Physical, Mental, WOMAC (pain, stiffness, function) parameters, and knee society function score (KSFS) were 39.3, 45.8, 47.7, 37.5, 48.1, and 50.0, respectively and post-operative at 3 months were 45.0, 53.0, 79.5, 72.5, 81.0, and 72.5, respectively; difference between preoperative and post-operative ROM was +8.4 degrees; average VAS pain score in the first 3 post-operative days was 2.9 ± 2.3; average opioid consumption was 100.7 ± 103.3 mg morphine equivalents; average inpatient ambulation per day was 267.9 ± 187.4 feet; average LOS was 2.3 days. In the VERASENSE cohort, patient reported outcomes for SF-12 Physical, Mental, WOMAC (pain, stiffness, function) parameters, and knee society function score (KSFS) were 38.2, 48.6, 40.1, 30.3, 40.0, and 48.7, respectively and post-operative at 3 months were 41.9, 47.6, 67.2, 59.7, 69.1, and 56.7; difference between preoperative and post-operative ROM was +3.9 degrees; average VAS pain score in the first 3 post-operative days was 2.9 ± 2.3; average opioid consumption was 105.8 ± 86.7 mg morphine equivalents; average inpatient ambulation was 384.6 ± 316.1 feet; average LOS was 2.1 days. There was no incidence of arthrofibrosis and subsequent manipulation under anesthesia in the trial. Conclusion. Short-term follow up of this randomized-controlled trial demonstrates equivalent patient-reported and clinical outcomes when soft-tissue balancing in TKA is performed free-hand versus utilization of VERASENSE, though we hypothesize a difference in the long-term


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 426 - 433
1 Apr 2020
Boettner F Sculco P Faschingbauer M Rueckl K Windhager R Kasparek MF

Aims. To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps. Methods. In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used. Results. Overall mean ROM in stiff knees increased preoperatively from 67° (0° to 80°) to 114° postoperatively (65° to 135°) (p < 0.001). Mean knee flexion improved from 82° (0° to 110°) to 115° (65° to 135°) and mean flexion contracture decreased from 14° (0° to 50°) to 1° (0° to 10°) (p < 0.001). The mean Knee Society Score (KSS) improved from 34 (0 to 71) to 88 (38 to 100) (p < 0.001) and the KSS Functional Score from 43 (0 to 70) to 86 (0 to 100). Seven knees (7%) required manipulations under anaesthesia (MUA) and none of the knees had flexion instability. The mean overall ROM in the control group improved from 117° (100° to 140°) to 123° (100° to 130°) (p < 0.001). Mean knee flexion improved from 119° (100° to 140°) to 123° (100° to 130°) (p < 0.001) and mean flexion contracture decreased from 2° (0° to 15°) to 0° (0° to 5°) (p < 0.001). None of the knees in the control group had flexion instability or required MUA. The mean KSS Knee Score improved from 48 (0 to 80) to 94 (79 to 100) (p < 0.001) and the KSS Functional Score from 52 (5 to 100) to 95 (60 to 100) (p < 0.001). Mean improvement in ROM (p < 0.001) and KSS Knee Score (p = 0.017) were greater in knees with preoperative stiffness compared with the control group, but the KSS Functional Score improvement was comparable (p = 0.885). Conclusion. TKA with a 2 mm increased flexion gap provided a significant improvement of ROM in knees with preoperative stiffness. While the improvement in ROM was greater, the absolute postoperative ROM was less than in matched non-stiff knees. PS TKA with patellar resurfacing and a 2 mm increased flexion gap, in combination with adequate soft tissue balancing, provides excellent ROM and knee function when stiffness of the knee had been present preoperatively. Cite this article: Bone Joint J 2020;102-B(4):426–433


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 24 - 24
1 Oct 2019
Livermore AT Erickson J Hickerson M Peters CL
Full Access

Introduction. Total knee arthroplasty (TKA) reliably improves pain and function in patients with knee osteoarthritis (OA), though a substantial percentage of patients remain unsatisfied. Reasons include the presence of complications, persistent pain, and unmet expectations. The aim of this study was to determine whether the sequential addition of accelerometer-based navigation of the distal femoral cut and sensor-assisted soft tissue balancing changed complication rates, radiographic alignment, or patient-reported outcomes (PROs) compared to TKA performed with conventional instrumentation. Methods. This retrospective cohort study included 371 TKAs in 319 patients. All surgeries were performed by a single surgeon in sequential fashion using a measured resection technique with a goal of mechanical alignment. The historical control group, utilizing intramedullary guides for distal femoral resection and surgeon-guided soft tissue balancing, was compared to group 1 (accelerometer-based navigation for distal femoral resection, surgeon-guided balancing) and group 2 (navigated femoral resection, sensor-guided balancing). Primary outcome measures were PROMIS scores including physical function computerized adaptive test (PF CAT), and the Global 10 health assessment (including physical, mental, and pain scores), and Knee Injury Osteoarthritis and Outcome Score (KOOS), measured preoperatively and at 6 weeks and 12 months postoperatively. Radiographic measurements included component position and overall mechanical alignment of the limb and were made at 6 weeks by a single examiner from hip to ankle standing films. Charts were reviewed for pre- and postoperative ROM at 6 weeks, polyethylene insert morphology, and postoperative hematocrit change. Complications were recorded, including manipulation under anesthesia and reoperation. Our study was powered to detect a difference of 1 standard deviation in PF CAT score with 100 patients. Statistical analysis was performed by a statistician including t-tests, multivariate regression, and time series plot analyses. Results. There were 194 patients in the control group, 103 in group 1, and 74 in group 2. There was no difference in baseline patient demographics. Patients in group 2 had higher baseline mental health subscores than control and group 1 patients (53.2 vs 50.2 vs 50.2, p=0.04). There were no differences in 6-week and one-year postop PF CAT, physical or mental subscores, pain scores, or KOOS scores (all p>0.05). There were 8 total complications in the control group (4.1%), 4 in group 1 (3.8%), and 1 in group 2 (1.4%) (p>0.4). The postoperative mechanical axis of the limb was within 3 degrees of neutral in 71.6% of control patients, 74.8% in group 1, and 85.1% in group 2 (p=0.1). There was no difference in femoral component coronal alignment between groups (p=0.91), though controls had a small but significantly higher degree of flexion in the sagittal plane (6.5 degrees) than groups 1 and 2 (5.4 degrees in both, p=0.003). There was no difference in postoperative ROM or blood loss. Conclusions. The sequential addition of imageless navigation of the distal femoral cut and sensor-guided ligament balancing did not confer any benefit to short term PROs, radiographic outcomes, or complication rates over conventional techniques. While overall mechanical alignment of the limb was improved in groups 1 and 2 compared to controls, this did not reach statistical significance. The additive costs of navigation and soft-tissue balancing technologies may not be justified. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 58 - 58
1 Oct 2019
Mullaji AB Panjwani T
Full Access

Aims. The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft-tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Patients and Methods. Four-hundred twenty-five consecutive, cemented, cruciate-substituting TKAs were analysed. Pre-operative varus was calculated on long leg weight-bearing HKA film. Limb deformity in coronal (varus) and sagittal (flexion) planes, medial and lateral gap distances in maximum knee extension and 90° knee flexion and maximum knee flexion were recorded before and after excision of medial femoral and tibial osteophytes using computer navigation. Data was extracted and analysed to assess the effect of removal of osteophytes on the correction of deformity and soft tissue balance. Results. Before removal of any osteophytes or soft tissue releases, 138 out of 425 (32%) achieved correction of deformity (HKA 180+2°). In the remaining knees, after osteophyte removal 183 knees (43%) achieved correction of deformity. Overall, 75% knees achieved deformity correction after removal of osteophytes. For the remaining 25% knees, additional procedures (such as capsular release, semimembranosus release, reduction osteotomy) were needed for deformity correction. Conclusion. Three-fourths of all knees were aligned with no release or only removal of osteophytes. Excision of medial femoral and tibial osteophytes can be a useful, initial step towards achieving deformity correction and gap balance without having to resort to soft-tissue release during TKA in varus knees. This is useful information for surgeons to desist from any soft tissue releases till osteophytes have been meticulously excised. For figures, tables, or references, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 60 - 60
1 Oct 2019
Kayani B Konan S Horriat S Haddad FS
Full Access

Introduction. The objective of this study was to assess the effect of PCL resection on flexion-extension gaps, mediolateral soft tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilised total knee arthroplasty (TKA). Methods. This prospective study included 110 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted posterior-stabilised TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps pre- and post-PCL resection in knee extension and 90 degrees knee flexion. This study included 54 males (49.1%) and 56 females (50.9%) with a mean age of 68 ± 6.2 years at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1 ± 4.4 degrees varus. Results. PCL resection increased the flexion gap more than the extension gap in the medial (2.4 ± 1.5mm vs 1.3 ± 1.0mm respectively, p<0.001) and lateral (3.3 ± 1.6mm vs 1.2 ± 0.9mm respectively, p<0.01) compartments. The gap differences following PCL resection created mediolateral laxity in flexion (gap difference: 1.1 ± 2.5mm, p<0.001) but not in extension (gap difference: 0.1 ± 2.1mm, p=0.51). PCL resection improved overall FFD (6.3 ± 4.4° preoperatively vs 3.1 ± 1.5° postoperatively, p<0.001). There was a strong positive correlation between preoperative FFD and change in FFD following PCL release (Pearson correlation coefficient = 0.81, p<0.001). PCL resection did not affect overall limb alignment (change in alignment: 0.2 ± 1.2 degrees valgus, p=0.60). Conclusion. PCL resection creates flexion-extension mismatch by increasing the flexion gap proportionally more than the extension gap. The increase in the lateral flexion gap is greater than the increase in medial flexion gap, which creates mediolateral laxity in flexion. Improvements in FFD following PCL resection are dependent on the degree of deformity prior to PCL resection. Bone resection, implant positioning, and periarticular soft tissue balancing should account for these changes in flexion-extension gaps, mediolateral laxity, and fixed flexion deformity following PCL resection in PS TKA. For figures, tables, or references, please contact authors directly


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 49 - 58
1 Jun 2020
Mullaji A

Aims. The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Methods. A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other. Results. Of 50 knees (10%) with no soft tissue releases (other than cruciate ligaments), 90% were aligned, 81% were balanced, and 73% were aligned and balanced. In 288 knees (59%) only osteophyte excision was performed by subperiosteally releasing the deep medial collateral ligament. Of these, 98% were aligned, 80% were balanced, and 79% were aligned and balanced. In 154 knees (31%), additional procedures were performed (reduction osteotomy, posterior capsular release, and semimembranosus release). Of these, 89% were aligned, 68% were balanced, and 66% were aligned and balanced. The superficial medial collateral ligament was not released in any case. Conclusion. Two-thirds of all knees could be aligned and balanced with release of the cruciate ligaments alone and excision of osteophytes. Excision of osteophytes can be a useful step towards achieving deformity correction and gap balance without having to resort to soft tissue release in varus knees while maintaining classical coronal and sagittal alignment of components. Cite this article: Bone Joint J 2020;102-B(6 Supple A):49–58


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 38 - 38
1 Oct 2018
Hozack WJ
Full Access

Introduction. Robotic-arm total knee arthroplasty (RTKA) was developed to potentially improve accuracy of bone cuts, component alignment, soft tissue balance, and patient outcomes. There is a paucity of data demonstrating that RTKA is superior to conventional total knee arthroplasty (CTKA) in terms of any of these metrics. This prospective comparative multicenter study was designed with these purposes in mind. Methods. Patients were enrolled between June 1st, 2016 and March 31st, 2018 in a prospective, non-randomized, open-label, multicenter, consecutive comparative cohort study comparing RTKA and CTKA. Only patients who satisfied the following inclusion criteria were included: body mass index (BMI) ≤ 40kg/m2, primary unilateral TKA procedure, at least 18 years of age, and no joint infection. The following data were collected for analysis:. Preoperative data on component size prediction from CT scans. Intraoperative data on bone resection levels and joint line maintenance. Functional activity scores, patient-reported symptoms, satisfaction and expectation scores using The New Knee Society Scoring System. Radiographic results, specifically coronal alignment. Results. For femoral components implanted, 82% were the exact size as predicted by the robotic-software and the remaining 18% were within 1 size (100% within 1 size). For tibial implants, 69% were the exact size of what the robotic-software predicted and 29% were within 1 size (98% within 1 size). RTKAs had significantly less distal lateral femoral resection (5.55 vs. 7.11 mm), distal medial femoral resection (6.89 vs. 7.97 mm), lateral tibial resection (7.76 vs. 8.54 mm), and medial tibial resection (4.11 vs. 5.56 mm, p<0.05) compared to CTKA. Joint line restoration was comparable between RTKA and CTKA, but required less tibial bone removal when using robotic techniques. Pre-operatively, all demographic, functional, symptom, satisfaction, and expectation measures were similar between treatment groups (all p<0.05, Tables 1–5). Those who underwent RTKA had significantly higher mean functional activity walking and standing score improvements from baseline to 4–6 weeks (1.4 vs. −1.2 points; p=0.019) and to 6 months (9.6 vs. 6.9 points; p=0.017) after surgery compared to CTKA. The mean overall functional activity score improvement from baseline to 1-year post-surgery was also higher for RTKA compared to CTKA (36.8 vs. 15.0 points; p=0.020). For all other parameters (standard activities, advanced activities, pain with walking, pain with stairs, satisfaction and expectation scores), score changes from baseline were not significantly different between groups, though many trended slightly higher for RTKA. Radiographic evaluation of RTKA demonstrated that varus deformity was corrected to neutral in 96% of cases and valgus deformity was corrected in 100%. Conclusion. To the best of our knowledge, this is the first study to prospectively evaluate outcomes of RTKA patients compared to CTKA. A number of positive early effects were seen with RTKA. This patient cohort will continue to be followed, and these findings may translate into longer-term patient reported outcomes improvement, longer component survivorship and cost savings. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 100 - 100
1 Jul 2012
Vaughan P Imam S Hutchinson J
Full Access

Purpose. To highlight the cardiovascular responses of a trainee and supervising consultant while performing Total Knee Arthroplasty (TKA) and to demonstrate the impact that supervision has on both their responses. Methods. A third year orthopaedic trainee and his consultant underwent non-invasive, continuous cardiac monitoring while performing three primary TKAs. The consultant performed one TKA with the trainee assisting. The trainee then performed two TKAs as primary surgeon. The consultant supervised one TKA scrubbed and the other un-scrubbed. A third person noted the timing of each distinct intra-operative step. A significant peak was defined as an increase in heart rate (HR) of >10%. Results. Trainee. Significant peaks were only observed when acting as primary surgeon. Peaks occurred during patient positioning, approach, femoral cut, tibial cut, component trial, soft tissue balancing and cementation. Maximum HR was observed during cementation. Scrubbed supervision reduced the magnitude of these peaks and of the maximum HR. Consultant. Significant peaks were only observed when supervising the trainee. Timing of these peaks and the maximum HR coincided with those of the trainee. Both were of the higher magnitude when supervising un-scrubbed. Conclusion. Significant peaks in HR illustrate the cardiovascular impact of performing TKA. This impact is greatest during the seven definitive steps of the procedure that we have highlighted. This cardiovascular impact of performing TKA reduces as the experience of the surgeon increases. Supervision of a less experienced/trainee surgeon performing a TKA also has a cardiovascular impact on the supervising consultant. To reduce this impact on both trainee and consultant we suggest that supervision, when required, is best provided scrubbed rather than un-scrubbed


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims

Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs.

Methods

The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims

Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment.

Methods

A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 610 - 618
1 Apr 2021
Batailler C Bordes M Lording T Nigues A Servien E Calliess T Lustig S

Aims

Ideal component sizing may be difficult to achieve in unicompartmental knee arthroplasty (UKA). Anatomical variants, incremental implant size, and a reduced surgical exposure may lead to over- or under-sizing of the components. The purpose of this study was to compare the accuracy of UKA sizing with robotic-assisted techniques versus a conventional surgical technique.

Methods

Three groups of 93 medial UKAs were assessed. The first group was performed by a conventional technique, the second group with an image-free robotic-assisted system (Image-Free group), and the last group with an image-based robotic arm-assisted system, using a preoperative CT scan (Image-Based group). There were no demographic differences between groups. We compared six parameters on postoperative radiographs to assess UKA sizing. Incorrect sizing was defined by an over- or under-sizing greater than 3 mm.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 191 - 197
1 Mar 2021
Kazarian GS Barrack RL Barrack TN Lawrie CM Nunley RM

Aims

The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA).

Methods

Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 36 - 42
1 Jun 2020
Nishitani K Kuriyama S Nakamura S Umatani N Ito H Matsuda S

Aims

This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes.

Methods

A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims

The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery.

Methods

An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims

A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation.

Methods

This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded.