Advertisement for orthosearch.org.uk
Results 1 - 20 of 60
Results per page:
Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 46 - 46
1 Jun 2017
Lawrence J Khanduja V Audenaert E
Full Access

Hip arthroscopy is a rapidly expanding technique that has a steep learning curve. Simulation may have a role in helping trainees overcome this. However there is as yet no validated hip arthroscopy simulator. This study aimed to test the construct validity of a virtual reality hip arthroscopy simulator. Nineteen orthopaedic surgeons performed a simulated arthroscopic examination of a healthy hip joint in the supine position. Surgeons were categorized as either expert (those who had performed 250 hip arthroscopies or more) or novice (those who had performed fewer than this). Twenty-one targets were visualized within joint; nine via the anterior portal, nine via the anterolateral and three via the posterolateral. This was followed by a task testing basic probe examination of the joint in which a series of eight targets were probed via the anterolateral portal. Each surgeon's performance was evaluated by the simulator using a set of pre-defined metrics including task duration, number of soft tissue & bone collisions, and distance travelled by instruments. No repeat attempts at the tasks were permitted. Construct validity was then evaluated by comparing novice and expert group performance metrics over the two tasks using the Mann–Whitney test, with a p value of less than 0.05 considered significant. On the visualization task, the expert group outperformed the novice group on time taken (P=0.0003), number of collisions with soft tissue (P=0.001), number of collisions with bone (P=0.002) and distance travelled by the arthroscope (P=0.02). On the probe examination, the two groups differed only in the time taken to complete the task (P=0.025). Increased experience in hip arthroscopy was reflected by significantly better performance on the VR simulator across two tasks, supporting its construct validity. This study validates a virtual reality hip arthroscopy simulator and supports its potential for developing basic arthroscopic skills


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 6 - 6
1 May 2018
Bartlett J Lawrence J Yan M Guevel B Stewart M Khanduja V
Full Access

Introduction. Decreases in trainees' working hours, coupled with evidence of worse outcomes when hip arthroscopies are performed by inexperienced surgeons, mandate the development of additional means of arthroscopic training. Though virtual reality simulation training has been adopted by other surgical specialities, its slow uptake in arthroscopic training is due to a lack of evidence as to its benefits. These benefits can be demonstrated through learning curves associated with simulator training – with practice reflecting measurable increases in validated performance metrics. Materials & Methods. Twenty-five medical students completed seven simulated arthroscopies of a healthy virtual hip joint in the supine position on a simulator previously shown to have construct validity. Twelve targets had to be visualised within the central compartment; six via the anterior portal, three via the anterolateral portal and three via the posterolateral portal. Eight students proceeded to complete seven probe examinations of a healthy virtual hip joint. Eight targets were probed via the anterolateral portal. Task duration, number of collisions with soft tissue and bone, and distance travelled by arthroscope were measured by the simulator for every session. Results. A learning curve was demonstrated by the students, with significant improvements in time taken (P<0.01), number of collisions (P<0.01), collision severity (P<0.01), and efficiency of movement (P<0.01). The largest difference between consecutive sessions was seen between sessions 1 and 2, with sessions thereafter showing only minimal rates of improvement. Similar improvements were found in the probe examination with students showing significant improvements in time taken (P<0.01), number of collisions (P<0.01), collision severity (P<0.01) and distance travelled by arthroscope (P<0.01). Conclusion. The results of this study demonstrate a learning curve for a previously validated hip arthroscopy simulator, confirming improved performance with repeated use. These results support the use of virtual reality as a potential means of developing basic hip arthroscopic skills


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 11 - 11
1 Oct 2019
Wyles CC Paradise CR Masters TL Patel R Abdel MP Trousdale RT Sierra RJ
Full Access

Introduction. Adverse local tissue reactions (ALTR) can result in devastating soft tissue and osseous destruction, while potentially increasing the risk of concomitant periprosthetic joint infection (PJI). The aims of this study were to evaluate cobalt (Co) and chromium (Cr) levels generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs, and determine their impact on native tissues and PJI risk through evaluation of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis isolates. Methods. Ten hip simulator constructs were assembled with 36-mm high-offset femoral heads, highly cross-linked polyethylene liners, and titanium stems. Five constructs used CoCr femoral heads and five used ceramic. Constructs were submerged in bovine serum (BS) and run for 1,000,000 cycles. Samples of BS were collected and evaluated for CoCr concentration. Various concentrations of CoCr were chosen for further assessment of cytotoxicity and growth impact on AMSCs and S. epidermidis and compared to inert SiO2. Results. After 1,000,000 cycles, mean MoP and CoP Co concentration was 2264 ng/mL and 0.6 ng/mL, respectively (p<0.001). Mean MoP and CoP Cr concentration was 217 ng/mL and 4.3 ng/mL, respectively (p<0.001). Mean MoP Co:Cr ratio was 10. Co nanoparticles were significantly more toxic to human AMSCs than control SiO2 in a dose-response manner (p<0.001). S. epidermidis growth was not significantly impacted by Co concentrations derived from the simulators. Conclusions. MoP constructs built in ideal conditions generated substantial CoCr debris, highlighting a baseline risk with these implants that may be exacerbated by host factors or imperfect surgical technique. Evaluation of impact on AMSCs suggests that debris levels produced under ideal conditions can be cytotoxic. Additionally, these concentrations did not potentiate or inhibit S. epidermidis growth, suggesting elevated PJI rates with ALTR may be related to other factors potentially associated with tissue necrosis. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 3 - 3
1 Nov 2015
Clarke I
Full Access

Introduction. One unpredictable clinical risk with THA may be impingement of a metal cup rim against a metal femoral-neck, with concomitant release of metal particles. Our objective was to determine if metal debris could be one trigger for catastrophic MOM wear. Patients/Materials & Methods. To simulate release of metal debris, we added metal particles (CoCr #230, Ti6Al4V #340) to six 38mm MOM bearings at beginning of each simulator test interval. The weekly 500,000 cycle intervals were replicated 10 times to acquire 5-million duty cycles. Flakes of polymerized bone cement (PMMA) were scraped from a retrieved TKR and used as control debris (N = 1,300 particles; 3 MOM). Results. Metal debris turned all lubricants black within first hour of test, and consistently over the study. Cement flakes elicited no such lubricant changes. MOM wear-rates using PMMA, CoCr, and Ti64 debris were 0.3, 4.1, and 6.4 cubic millimetes per million cycles, respectively, revealing statistically significant differences. The CoCr debris allotment produced ×30 times its weight in surface wear; the Ti6Al4V debris produced ×50 times its weight in CoCr wear. Discussion. Successful MOM bearings were reputed to have low friction due to fluid-film lubrication. Nevertheless, any THA impingement that can release metal debris may compromise such thin films. This simulator study of MOM bearings running under abrasive conditions revealed that MOM wear-rates with CoCr and Ti6Al4V debris were raised ×14 and ×23 times greater than that of PMMA debris. Conclusion. The insertion of metal debris, simulating just one impingement episode in 500,000 gait cycles, created a ×30–50 times multiplier effect in production of CoCr debris. The resulting black lubricants may be directly analogous to the black tissues noted around high-wearing MOM bearings. Thus the nemesis of MOM THA may be an extreme sensitivity to 3rd-body wear particles


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 18 - 18
7 Jun 2023
Schapira B Spanoudakis E Jaiswal P Patel A
Full Access

Surgical trainees are finding it increasingly more challenging to meet operative requirements and coupled with the effects of COVID-19, we face a future of insufficiently trained surgeons. As a result, virtual reality (VR) simulator training has become more prevalent and whilst more readily accepted in certain arthroscopic fields, its use in hip arthroscopy (HA) remains novel. This project aimed to validate VR high-fidelity HA simulation and assess its functional use in arthroscopic training. Seventy-two participants were recruited to perform two basic arthroscopic tasks on a VR HA simulator, testing hip anatomy, scope manipulation and triangulation skills. They were stratified into novice (39) and experienced (33) groups based on previous arthroscopy experience. Metric parameters recorded from the simulator were used to assess construct validity. Face validity was evaluated using a Likert-style questionnaire. All recordings were reviewed by 2 HA experts for blinded ASSET score assessment. Experienced participants were significantly faster in completing both tasks compared with novice participants (p<0.001). Experienced participants damaged the acetabular and femoral cartilage significantly less than novice participants (p=0.011) and were found to have significantly reduced path length of both camera and instrument across both tasks (p=0.001, p=0.007), demonstrating significantly greater movement economy. Total ASSET scores were significantly greater in experienced participants compared to novice participants (p=0.041) with excellent correlation between task time, cartilage damage, camera and instrument path length and corresponding ASSET score constituents. 62.5% of experienced participants reported a high degree of realism in all facets of external, technical and haptic experience with 94.4% advising further practice would improve their arthroscopic skills. There was a relative improvement of 43% in skill amongst all participants between task 1 and 2 (p<0.001). This is the largest study to date validating the use of simulation in HA training. These results confirm significant construct and face validity, excellent agreement between objective measures and ASSET scores, significant improvement in skill with continued use and recommend VR simulation to be a valuable asset in HA training for all grades


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 72 - 72
23 Jun 2023
Greenwald AS
Full Access

Advances in total hip and knee replacement technologies have heretofore been largely driven by corporate marketing hype with each seeming advancement accompanied by a cost increase often out in front of peer-reviewed reports documenting their efficacy or not. As example, consider the growing use of ceramic femoral heads in primary total hip arthroplasty (THA). The question to consider is “Can an upcharge of $350 for a ceramic femoral head in primary THA be justified?” The answer to this question lies in an appreciation of whether the technology modifies the potential for costly revision arthroplasty procedures. Peer-Reviewed Laboratory & Clinical Review - According to the 2022 Australian National Joint Replacement Registry, the four leading causes of primary THA failure requiring revision are: 1.) infection, 2.) dislocation/instability, 3.) periprosthetic fracture and 4.) loosening, which constitute 87.5% of the reported reasons for revision. Focusing on these failure modes, hip simulator findings report that ceramic femoral heads dramatically reduce wear debris generation, decreasing the potential for osteolytic response leading to loosening. Further, ceramic materials enable the utilization of larger head sizes, avoiding the potential for dislocation. The overall mid- to long-term survival rate reported in the peer-reviewed, clinical literature for these bearings has exceeded 95% with virtually no osteolysis. Also, could bearing surface choice influence periprosthetic joint infection (PJI)? A study on a total of more than 10,500 primary THA procedures reported a confirmed PJI incidence of 2.4% for cobalt-chrome and 1.6% for ceramic femoral heads, suggesting that the employ of a ceramic bearing surface may also play a role in decreasing the potential for infection. Review of the clinical data available for ceramic bearings justifies that it is better to “pay me now than to pay orders of magnitude later”, if in fact a revision THA can be avoided, significantly reducing the overall financial burden to the healthcare system


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 28 - 28
1 Aug 2021
Whelton C Barrow J Singhal R Board T
Full Access

Orthopaedic surgical hoods rely on an intrinsic fan to force clean external air over the wearer and allow potentially contaminated and expired air to flow down and away from the surgical field. Carbon dioxide (CO. 2. ) is produced through aerobic metabolism and can potentially accumulate inside the hood. Levels above 2500ppm have been shown to affect cognitive and practical function in flight simulator studies. Maximum Health and Safety Executive (HSE) 8-hour exposure limit is 5000ppm There is a paucity of data on real-world CO. 2. levels experienced during arthroplasty surgery whilst wearing a hood. CO. 2. levels were continuously recorded during 31 elective arthroplasties, both primary and revision. Data was collected for surgeon and assistant. Data was recorded at 0.5Hz throughout the procedure utilising a Bluetooth CO. 2. detector, worn inside a Stryker Flyte. ™. surgical helmet worn with a toga gown. Four surgeons contributed real time data to the study. This data was augmented with experimental data, investigating varying fan speeds and activity levels. Median operative duration was 82 minutes (range 36–207). The average CO. 2. level across all procedures was 2952ppm, with 22 of the cases having a mean above 2500ppm, but none having a mean above 5000ppm. For each procedure, the time spent above 2500 and 5000 ppm was calculated, with the average being 68.4 % and 5.6% respectively. The experimental data demonstrated higher CO. 2. levels with lower fan speed, and at higher activity levels, and levels exceeding 15000 ppm during gentle exercise. During operative cases, low fan speed cases did have a marginally higher mean CO. 2. value than high fan speed (3033.02 and 2903.56 respectively) but the small numbers of cases (n=10) where this data was captured limit the relevance of this difference. The use of surgical helmets for elective orthopaedic surgery, can results in CO. 2. levels regularly rising to a point which may affect cognitive function. This study recommends the use of a higher fan speed where possible to minimise the risk of such CO. 2. levels, and recommends further research in this area


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1134 - 1141
1 Sep 2009
Isaac GH Brockett C Breckon A van der Jagt D Williams S Hardaker C Fisher J Schepers A

This study reports on ceramic-on-metal (CoM) bearings in total hip replacement. Whole blood metal ion levels were measured. The median increase in chromium and cobalt at 12 months was 0.08 μg/1 and 0.22 μg/1, respectively, in CoM bearings. Comparable values for metal-on-metal (MoM) were 0.48 μg/1 and 0.32 μg/1. The chromium levels were significantly lower in CoM than in MoM bearings (p = 0.02). The cobalt levels were lower, but the difference was not significant. Examination of two explanted ceramic heads revealed areas of thin metal transfer. CoM bearings (one explanted head and acetabular component, one explanted head and new acetabular component, and three new heads and acetabular components) were tested in a hip joint simulator. The explanted head and acetabular component had higher bedding-in. However, after one million cycles all the wear rates were the same and an order of magnitude less than that reported for MoM bearings. There were four outliers in each clinical group, primarily related to component malposition


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1032 - 1038
1 Sep 2022
García-Rey E Cruz-Pardos A Saldaña L

Aims

A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade.

Methods

Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 852 - 858
1 Jul 2022
Grothe T Günther K Hartmann A Blum S Haselhoff R Goronzy J

Aims

Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors.

Methods

Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti12Mo6Zr2Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 18 - 18
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Field R Cobb J
Full Access

Background. For total hip arthroplasty (THA), cognitive training prior to performing real surgery may be an effective adjunct alongside simulation to shorten the learning curve. This study sought to create a cognitive training tool to perform direct anterior approach THA, validated by expert surgeons; and test its use as a training tool compared to conventional material. Methods. We employed a modified Delphi method with four expert surgeons from three international centres of excellence. Surgeons were independently observed performing THA before undergoing semi-structured cognitive task analysis (CTA) before completing successive rounds of electronic surveys until consensus. The agreed CTA was incorporated into a mobile and web-based platform. Forty surgical trainees (CT1-ST4) were randomised to CTA-training or a digital op-tech with surgical videos, before performing a simulated DAA THA in a validated fully-immersive virtual reality simulator. Results. Experts reached 100% consensus after five rounds. They defined THA in 46 steps and 52 decision points in 8 distinct procedural phases. Each phase comprised of a set of actions, cognitive demands, and critical errors and strategies. This CTA was mapped onto an open-access web-based learning tool [1]. Surgeons who prepared with CTA performed a simulated THA more efficiently (Time: 26 vs. 36 minutes and Procedural steps: 64 vs. 78), with fewer errors in instrument selection (22 vs 34 instances) and help required (6 vs. 19 instances), and with more accuracy (acetabular cup inclination error: 7° vs. 12°, anteversion error: 11° vs 19°) than those who prepared with conventional material. Discussion. This is the first validated CTA tool for arthroplasty. It provides structure for competency-based learning of this complex procedure. It is more effective at preparing orthopaedic trainees for a new procedure than conventional materials, for learning sequence, instrumentation and motor skills. Implications. Cognitive training combines education on decision making, knowledge and technical skill. It is a validated educational tool to upskill surgeons to perform hip arthroplasty and could replace current training and preparation methods for junior surgeons


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 27 - 27
1 May 2019
Logishetty K Rudran B Gofton W Beaule P Cobb J
Full Access

Background. Virtual Reality (VR) uses headsets and motion-tracked controllers so surgeons can perform simulated total hip arthroplasty (THA) in a fully-immersive, interactive 3D operating theatre. The aim of this study was to investigate the effect of laboratory-based VR training on the ability of surgical trainees to perform direct anterior approach THA on cadavers. Methods. Eighteen surgical trainees (CT1-ST4) with no prior experience of direct anterior approach (DAA) THA completed an intensive 1-day course (lectures, dry-bone workshops and technique demonstrations). They were randomised to either a 5-week protocol of VR simulator training or conventional preparation (operation manuals and observation of real surgery). Trainees performed DAA-THA on cadaveric hips, assisted by a passive scrub nurse and surgical assistant. Performance was measured on the Intercollegiate Surgical Curriculum Project (ISCP) procedure-based assessment (PBA), on a 9-point global summary score (Table 1). This was independently assessed by 2 hip surgeons blinded to group allocation. The secondary outcome measure was error in cup orientation from a predefined target (40° inclination and 20° anteversion). Results. Surgeons trained using VR performed a cadaveric DAA-THA significantly better than those using conventional preparation, as assessed by acetabular cup orientation (p<0.001) and using the ISCP-PBA. Two VR surgeons achieved Level 3b, 6 were graded at Level 3a, and 1 was graded at Level 2b. Six non-VR surgeons achieved Level 2a and 3 were graded at Level 1b. Discussion. These data demonstrate transfer of procedural knowledge and psychomotor skills learnt from VR to a real-world setting. Conventional preparation had limited value for novice surgeons learning arthroplasty. VR training advanced them further up the learning curve. Implications. Virtual reality can augment surgical training for open procedures in orthopaedics curve, so opportunities in real surgery can be maximised. This has implications for how surgical training is delivered for surgeons learning a new, complex procedure. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 35 - 35
1 Aug 2018
Garvin K Weisenburger J Kyomoto M Siskey R Kurtz S Haider H
Full Access

We report on an innovative surface grafting to highly crosslinked (HXLPE) bearing for THA using a biocompatible-phospholipid-polymer poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC). Such hydrophilic surfaces mimic articular cartilage and are hypothesized to improve lubrication and thereby reduce friction and wear. We performed in vitro testing of wear and friction of ceramic-on-polyethylene THRs with the PMPC treatment, and compared them with untreated controls. Highly cross-linked UHMWPE bearings, gamma-ray-irradiated at different levels with and without vitamin E (HXL Vit. E: 125 kGy, HXL: 75 kGy, respectively) were divided so half were PMPC treated (n=3 for all four groups). All were paired with identical 40 mm diameter zirconia-toughened-alumina ceramic heads. Testing was carried-out on an AMTI hip simulator for 10 million simulated walking cycles with standard lubricant and conditions (ISO-14242-1). Wear was measured gravimetrically at 21 intervals, and so was frictional torque with a previously described and tested methodology. PMPC treatment produced a statistically significant 71% in wear reduction of HXL poly (1.70±1.36 mg/Mc for PMPC vs. 5.86±0.402 mg/Mc for controls, p=0.013). A similar significant wear reduction was found for PMPC treated HXL with Vit. E liners (0.736±0.750 mg/Mc, vs. 2.14±0.269 mg/Mc, p=0.035). The improvements were associated with 12% and 5% reductions in friction of the HXL and Vit. E HXL respectively (statistically significant p=0.003, and marginal p=0.116, one tailed). These results were an important step in the quest for lower wearing, thin and strong UHMWPE liners for larger diameter femoral heads with the potential benefit of longevity and less risk of dislocation after surgery


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 200 - 205
1 Feb 2022
Orita K Goto K Kuroda Y Kawai T Okuzu Y Matsuda S

Aims

The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA).

Methods

We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims

Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position.

Methods

We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 21 - 21
1 Oct 2018
Amstutz H Duff ML
Full Access

Introduction. Because of concerns regarding excessive wear and short-term failures attributed to the metal-on-metal bearings, the use of metal-on-metal hip resurfacing arthroplasty (MOMHRA) has been greatly reduced since 2008, despite great mid-term results for well-designed implants and in certain patient populations. The true cause of excessive wear was then unknown. Therefore, identification of true risk factors for the procedure became paramount to refine indications and improve survivorship outcomes. Methods. Over the last 10 years, a systematic search of the US national library of Medicine and National institutes of health with the key words “metal-on-metal” and hip resurfacing” was conducted and returned 2186 items. Of these items, 862 were deemed relevant to our research purposes and entered in our center's reference database from which this review was performed. Results. Edge loading is the main culprit for high wear and high serum Co and Cr ion concentrations because it disrupts the fluid film lubrication of the device. Computation of the contact patch to rim distance (CPR), an estimate of the joint's functional coverage, is the best predictor of potential edge loading and excessive wear. Both in vivo and in vitro studies show that the wear of well-designed and well-positioned MOM bearings diminishes over time with continued use, an advantage only featured by MOM bearings. Systemic wear-related complications and hypersensitivity to metal once thought to be common are in fact rare occurrences. In addition, metal-related revisions only represent a small portion of the various modes of failure encountered with well-designed HRA. In our series of 1321 hips with only 0.5% lost to follow-up, 11 patients underwent revision surgery for excessive wear or adverse local tissue reaction. All but 2 had mal-positioned acetabular components (CPR distance <10mm). One of these 2 patients had serum cobalt and chromium levels of 13 and 9 µg/L respectively, despite a CPR distance of 18.3 mm, while the other showed a peri-prosthetic fluid collection estimated at 111cc on MRI. Component aseptic loosening (acetabular or femoral) remains, as is also the case for total hip arthroplasty (THA), the leading indication for revision surgery, even though substantial progress has been reported to reduce its incidence. Femoral neck fractures and loosening are associated with the surgeon's learning curve which can be avoided with proper training. The survivorship of the femoral component in our series after implementation of surgical technique changes is 99.2% at 10 years for an overall survivorship of 95.5%. A diagnosis of DDH is associated with a higher failure rate, particularly from socket loosening, while women without risk factors have a survivorship of 98.6% at 15 years. Conclusion. HRA has often been, but should not be associated with the results of large head metal-on-metal THA which often present with a different set of failure mechanisms. Now that most of the risk factors for HRA have been identified, and solutions found, a balanced perspective of its results is needed because the long-term data available validate the low wear of MOM bearings which was predicted in the early hip simulator studies. Considering the tremendous progress made in surgical technique and the advanced tribological knowledge acquired with the last 20 years of investigations related to MOM HRA, all the conditions are present to make this procedure a success for lifetime durability as shown in our series where 44 patients (54 hips) have died without a revision at a mean follow-up time of 9.7 years (range, 1.8 to 19.7). For HRA, when devices with adequate coverage and clearance of the ball by the socket are used, severe developmental dysplasia and inadequate surgical technique are responsible for most failures at 10 to 15 years of follow-up. It is our opinion that the advantages of HRA over THA (such as absence of thigh pain, a low dislocation rate, no taper corrosion, and the preservation of proximal femoral bone mineral density and the ability to maintain high activity levels without penalty) now outweigh the risks of using a MOM bearing


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1585 - 1592
1 Dec 2019
Logishetty K Rudran B Cobb JP

Aims

Arthroplasty skills need to be acquired safely during training, yet operative experience is increasingly hard to acquire by trainees. Virtual reality (VR) training using headsets and motion-tracked controllers can simulate complex open procedures in a fully immersive operating theatre. The present study aimed to determine if trainees trained using VR perform better than those using conventional preparation for performing total hip arthroplasty (THA).

Patients and Methods

A total of 24 surgical trainees (seven female, 17 male; mean age 29 years (28 to 31)) volunteered to participate in this observer-blinded 1:1 randomized controlled trial. They had no prior experience of anterior approach THA. Of these 24 trainees, 12 completed a six-week VR training programme in a simulation laboratory, while the other 12 received only conventional preparatory materials for learning THA. All trainees then performed a cadaveric THA, assessed independently by two hip surgeons. The primary outcome was technical and non-technical surgical performance measured by a THA-specific procedure-based assessment (PBA). Secondary outcomes were step completion measured by a task-specific checklist, error in acetabular component orientation, and procedure duration.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 25 - 25
1 Jun 2016
Ferguson D Henckel J Holme T Berber R Matthews W Carrington R Miles J Mitchell P Jagiello J Skinner J Hart A
Full Access

Introduction. Surgical simulation and ‘virtual’ surgical tools are becoming recognised as essential aids for speciality training in Trauma & Orthopaedics, as evidenced by the BOA T&O Simulation Curriculum 2013. 1,2. The current generation of hip arthroplasty simulators, including cadaveric workshops, offers the trainee limited exposure to reproducible real life bony pathology. We developed and implemented a novel training course using pathological dry bone models generated from real patient cases to support senior orthopaedic trainees and new consultants in developing knowledge and hands on skills in complex total hip arthroplasty. Patient/Materials & Methods. A two-day programme for 20 delegates was held at a specialist centre for hip arthroplasty. Three complex femoral and three complex acetabular cases were identified from patients seen at our centre. 3D models were printed from CT scans and dry bone models produced (using a mold-casting process), enabling each delegate to have a copy of each case at a cost of around £30 per case per delegate (Figure 1). The faculty was led by 4 senior Consultant revision hip surgeons. A computerised digitising arm was used to measure cup positioning and femoral stem version giving candidates immediate objective feedback (Figure 2). Candidate experience and satisfaction with the course and models was evaluated with a standardised post-course questionnaire. Results. 91% of respondents rated overall course satisfaction good or very good with 100% stating learning objectives were met or exceeded. 100% of delegates rated the bone model workshop cases as good or very good for the acetabular course, and 88% for the femoral course. Discussion. This course has been shown to enhance learning of surgical techniques and skills in complex hip surgery. Conclusion. We have developed a novel, effective and low cost training simulation method using pathological dry bone models for complex and revision hip arthroplasty which could be developed for other anatomical areas


Bone & Joint Research
Vol. 9, Issue 8 | Pages 515 - 523
1 Aug 2020
Bergiers S Hothi H Henckel J Eskelinen A Skinner J Hart A

Aims

The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components.

Methods

A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired t-test were used, in addition to calculating the non-parametric Spearman's correlation coefficient, to statistically evaluate the acquired data.