Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 74 - 74
1 Mar 2021
Meynen A Verhaegen F Debeer P Scheys L
Full Access

During shoulder arthroplasty the native functionality of the diseased shoulder joint is restored, this functionality is strongly dependent upon the native anatomy of the pre-diseased shoulder joint. Therefore, surgeons often use the healthy contralateral scapula to plan the surgery, however in bilateral diseases such as osteoarthritis this is not always feasible. Virtual reconstructions are then used to reconstruct the pre-diseased anatomy and plan surgery or subject-specific implants. In this project, we develop and validate a statistical shape modeling method to reconstruct the pre-diseased anatomy of eroded scapulae with the aim to investigate the existence of predisposing anatomy for certain shoulder conditions. The training dataset for the statistical shape model consisted of 110 CT images from patients without observable scapulae pathologies as judged by an experienced shoulder surgeon. 3D scapulae models were constructed from the segmented images. An open-source non-rigid B-spline-based registration algorithm was used to obtain point-to-point correspondences between the models. The statistical shape model was then constructed from the dataset using principle component analysis. The cross-validation was performed similarly to the procedure described by Plessers et al. Virtual defects were created on each of the training set models, which closely resemble the morphology of glenoid defects according to the Wallace classification method. The statistical shape model was reconstructed using the leave-one-out method, so the corresponding training set model is no longer incorporated in the shape model. Scapula reconstruction was performed using a Monte Carlo Markov chain algorithm, random walk proposals included both shape and pose parameters, the closest fitting proposal was selected for the virtual reconstruction. Automatic 3D measurements were performed on both the training and reconstructed 3D models, including glenoid version, critical shoulder angle, glenoid offset and glenoid center position. The root-mean-square error between the measurements of the training data and reconstructed models was calculated for the different severities of glenoid defects. For the least severe defect, the mean error on the inclination, version and critical shoulder angle (°) was 2.22 (± 1.60 SD), 2.59 (± 1.86 SD) and 1.92 (± 1.44 SD) respectively. The reconstructed models predicted the native glenoid offset and centre position (mm) an accuracy of 0.87 (± 0.96 SD) and 0.88 (± 0.57 SD) respectively. The overall reconstruction error was 0.71 mm for the reconstructed part. For larger defects each error measurement increased significantly. A virtual reconstruction methodology was developed which can predict glenoid parameters with high accuracy. This tool will be used in the planning of shoulder surgeries and investigation of predisposing scapular morphologies


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 176 - 176
1 Jul 2014
Dhir R Lambert S
Full Access

Summary Statement. Sprengel's deformity is a rare congenital anomaly, with scapula malposition. We present a unique subgroup of Sprengel's possessing a cleithrum, an ancestral remnant of shoulder-girdle development found in bony-fish. This challenges management providing valuable insight into scapular embryology and development. Introduction. Sprengel's deformity is a rare congenital anomaly of the shoulder girdle characterised by scapula malposition, associated with atrophy of periscapular muscles causing disfigurement and limited shoulder movement. Traditionally, it has been managed by omovertebral bar excision and muscle transplantation procedures guided by age and Cavendish grading. We present a unique, previously undescribed observation in humans: a case series of patients with Sprengel's deformity possessing a cleithrum, an ancestral remnant of shoulder-girdle development found in archaic bony fish. Methods. Nine patients presented with a so-called ‘Sprengel deformity’ to a tertiary referral shoulder clinic. All were assessed clinically and radiologically with scapular radiographs, and CT and/or MRI scans. The clinical (functional and cosmetic) and radiological features were classified according to Cavendish and Rigault systems, respectively and scapular ratio, assessed. Results. All patients were classed grade 4 on the Cavendish scale. Six were grade 2 and three were grade 3 on the Rigault scale. Mean scapular ratio was 1.04. Associated renal, craniocervical and cervicothoracic anomalies were present. The distinguishing surgical patho-anatomical feature was partial endomuscular ossification of medial scapular suspension muscles, analogous with the cleithrum of bony fish. The bone commonly articulated with the spinal column through pseudarthroses. Conclusions. This finding of the cleithrum not only challenges classic management of this rare patient group, as it cannot be managed by traditional muscle transplantation procedures, but offers insight into scapular embryology and development. The association of scapular developmental and urogenital anomalies suggests screening investigation of renal tracts in those with undescended scapula syndrome is relevant, and further genetic investigation might be pertinent to understand scapular development and pathology. We suggest, to emphasise the nature of the incomplete scapular descent and associated congenital anomalies, and clarify the imprecise common usage of the term ‘Sprengel’ this condition be called the ‘Congenital Undescended Scapula Syndrome’


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 352 - 352
1 Jul 2014
Oki S Matsumura N Morioka T Ikegami H Kiriyama Y Nakamura T Toyama Y Nagura T
Full Access

Summary Statement. We measured scapulothoracic motions during humeral abduction with different humeral rotations in healthy subjects and whole cadaver models and clarified that humeral rotation significantly influenced scapular kinematics. Introduction. Scapular dyskinesis has been observed in various shoulder disorders such as impingement syndrome or rotator cuff tears. However, the relationship between scapular kinematics and humeral positions remains unclear. We hypothesised that humeral rotation would influence scapular motions during humeral abduction and measured scapular motion relative to the thorax in the healthy subjects and whole cadavers. Methods. Healthy Subjects: Twenty-four shoulders of twelve healthy subjects without shoulder disorders were enrolled. Three electromagnetic sensors were attached on the skin over the sternum, scapula and humerus. Scapular motions during scapular plane abduction (abduction) were measured. The measurements were performed with four hand positions, palm up, thumb up, palm down and thumb down. The elbow was kept extended in all measurements. Each measurement took 5 seconds and repeated three times. Cadavers: Twelve shoulders from 6 fresh whole cadavers were used. A cadaver was set in sitting position on a wooden chair without interrupting scapular motions. Electromagnetic sensors were attached on the thorax, scapula and humerus rigidly with transcortical pins. The elbow was kept in extended position by holding the forearm and the arm was moved passively. The measurements were performed during scapular plane abduction and scapular kinematics were measured in four hand positions, 1: thumb up, 2; palm up, 3; palm down, 4; thumb down as well as the healthy subjects. Each measurement took 5 seconds and repeated three times. Data Analysis: The coordinate system and rotation angles of the thorax, scapula and humerus were decided following ISB recommendation. A one-way analysis of variance was used to test the differences in 4 arm positions. Dunnet's multiple post hoc tests were used to identify the difference between thumb up model (neutral rotation) and other three arm positions. Results. Scapular posterior tilt increased during palm up abduction (healthy subjects −2.0° to 0.1°, cadaver −3.2° to −1.4° at 120° of abduction). During thumb-down abduction, scapular posterior tilt decreased (healthy subjects −4.1° to −8.0° at 110° of abduction, cadaver −3.2° to −8.6° at 120° of abduction) and scapular upward rotation increased (healthy subjects 21.0° to 26.1° at 110° of abduction, cadaver 25.3° to 31.1° at 120° of abduction). Thumb down abduction demonstrated no significant difference from thumb up position. Discussion. Scapular motions measured in healthy subjects and cadaver models showed similar patterns indicating that surface markers on the healthy subjects could track scapular motions successfully as bone markers in cadaver models. Humeral external rotation increased scapular posterior tilt and humeral internal rotation increased scapular anterior tilt and upward rotation. This suggests that position of the greater and lesser tuberosity and tension of the joint capsule caused scapular tilt and scapular upward rotation. Kinematic changes caused by humeral rotations were observed in earlier phase of abduction in healthy subjects than in cadaver models. This suggests that healthy subjects set scapular position beforehand not to increase subacromial pressure. Conclusion. Humeral rotation significantly influenced scapular kinematics. Assessment for these patterns is important for evaluation of shoulder pathology associated with abnormal scapular kinematics


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 87 - 87
4 Apr 2023
Gehweiler D Pastor T Gueorguiev B Jaeger M Lambert S
Full Access

The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function. Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies. A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/elevation, in-/external rotation) can be set and scanned in a defined and reproducible manner. Clavicle fractures healed in malposition can be simulated by osteotomy and fixation using a titanium/carbon external fixator. During image processing the first rib served as fixed reference in space. Clavicle, scapula and humerus were registered, segmented, and triangulated. The different positions were displayed as superimposed surface meshes and measurements performed automatically. Initial results of an intact shoulder girdle demonstrated that different arm positions including ante-/retroversion and abduction/elevation resulted solely in a transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space. A radiolucent frame enabling systematic and reproducible CT scanning of upper torsos in various arm movements was developed and utilized to characterize the effect on the 3D volume of the periclavicular space. Initial results demonstrated exclusively transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space during arm positions within a physiological range of motion


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 112 - 112
1 Dec 2020
Meynen A Verhaegen F Mulier M Debeer P Scheys L
Full Access

Pre-operative 3D glenoid planning improves component placement in terms of version, inclination, offset and orientation. Version and inclination measurements require the position of the inferior angle. As a consequence, current planning tools require a 3D model of the full scapula to accurately determine the glenoid parameters. Statistical shape models (SSMs) can be used to reconstruct the missing anatomy of bones. Therefore, the objective of this study is to develop and validate an SSM for the reconstruction of the inferior scapula, hereby reducing the irradiation exposure for patients. The training dataset for the statistical shape consisted of 110 CT images from patients without observable scapulae pathologies as judged by an experienced shoulder surgeon. 3D scapulae models were constructed from the segmented images. An open-source non-rigid B-spline-based registration algorithm was used to obtain point-to-point correspondences between the models. A statistical shape model was then constructed from the dataset using principal component analysis. Leave-one-out cross-validation was performed to evaluate the accuracy of the predicted glenoid parameters from virtual partial scans. Five types of virtual partial scans were created on each of the training set models, where an increasing amount of scapular body was removed to mimic a partial CT scan. The statistical shape model was reconstructed using the leave-one-out method, so the corresponding training set model is no longer incorporated in the shape model. Reconstruction was performed using a Monte Carlo Markov chain algorithm, random walk proposals included both shape and pose parameters, the closest fitting proposal was selected for the virtual reconstruction. Automatic 3D measurements were performed on both the training and reconstructed 3D models, including glenoid version, inclination, glenoid centre point position and glenoid offset. In terms of inclination and version we found a mean absolute difference between the complete model and the different virtual partial scan models of 0.5° (SD 0.4°). The maximum difference between models was 3° for inclination and 2° for version. For offset and centre point position the mean absolute difference was 0 mm with an absolute maximum of 1 mm. The magnitude of the mean and maximum differences for all anatomic measurements between the partial scan and complete models is smaller than the current surgical accuracy. Considering these findings, we believe a SSM based reconstruction technique can be used to accurately reconstruct the glenoid parameters from partial CT scans


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 81 - 81
14 Nov 2024
Ahmed NA Narendran K Ahmed NA
Full Access

Introduction. Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. Method. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest. Result. The glenoid index calculated in the current study using 3D volumetric CT images and MR sagittal PD images was 0.95±0.01 and 0.95±0.01, respectively. The CT and MRI glenoid bone loss was 5.41±0.65% and 5.38±0.65%, respectively. When compared, the glenoid index and bone loss calculated by MRI and CT revealed a high correlation and significance with a p-value of <0.001. Conclusions. The study concluded that MRI is a reliable method for glenoid measurement. The sagittal PD sequence combined with an enface glenoid makes it possible to identify osseous defects linked to glenohumeral joint damage and dislocation. The values derived from 3D CT are identical to the glenoid index and bone loss determined using the sagittal PD sequence in MRI


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 68 - 68
4 Apr 2023
Kelly E Gibson-Watt T Elcock K Boyd M Paxton J
Full Access

The COVID-19 pandemic necessitated a pivot to online learning for many traditional, hands-on subjects such as anatomy. This, coupled with the increase in online education programmes, and the reduction of time students spend in anatomy dissection rooms, has highlighted a real need for innovative and accessible learning tools. This study describes the development of a novel 3-dimensional (3D), interactive anatomy teaching tool using structured light scanning (SLS) technology. This technique allows the 3D shape and texture of an object to be captured and displayed online, where it can be viewed and manipulated in real-time. Human bones of the upper limb, vertebrae and whole skulls were digitised using SLS using Einscan Pro2X/H scanners. The resulting meshes were then post-processed to add the captured textures and to remove any extraneous information. The final models were uploaded into Sketchfab where they were orientated, lit and annotated. To gather opinion on these models as effective teaching tools, surveys were completed by anatomy students (n=35) and anatomy educators (n=8). Data was collected using a Likert scale response, as well as free text answers to gather qualitative information. 3D scans of the scapula, humerus, radius, ulna, vertebrae and skull were successfully produced by SLS. Interactive models were produced via scan data in Sketchfab and successfully annotated to provide labelled 3D models for examination. 94% of survey respondents agreed that the interactive models were easy to use (n=35, 31% agree and 63% strongly agree) and 97% agreed that the 3D interactive models were more useful than 2D images for learning bony anatomy (n=35; 26% agree and 71% strongly agree). This initial study has demonstrated a suitable proof-of-concept for SLS technology as a useful technique for producing 3D interactive online tools for learning and teaching bony anatomy. Current studies are focussed on determining the SLS accuracy and the ability of SLS to capture soft tissue/joints. We believe that this tool will be a useful technique for generating online 3D interactive models to study orthopaedic anatomy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 47 - 47
14 Nov 2024
Daneshvarhashjin N Debeer P Andersen MS Verhaegen F Scheys L
Full Access

Introduction. Assessment of the humeral head translation with respect to the glenoid joint, termed humeral head migration (HHM), is crucial in total shoulder arthroplasty pre-operative planning. Its assessment informs current classification systems for shoulder osteoarthritis as well as the evaluation of surgical correction. In current clinical practice, HHM assessment relies on computed-tomography (CT) imaging. However, the associated supine position might undermine its functional relevance as it does not reflect the weight-bearing condition with active muscle engagement associated with the upright standing position of most daily activities. Therefore, we assessed to what extent HHM in a supine position is associated with HHM in a range of functional arm positions. Method. 26 shoulder osteoarthritis patients and 12 healthy volunteers were recruited. 3D shapes of the humerus and scapula were reconstructed from their respective CT scans using an image processing software. 3. , and their CT-scan-based HHMs were measured. Furthermore, all subjects underwent low-dose biplanar radiography . 4. in four quasi-static functional arm positions while standing: relaxed standing, followed by 45 degrees of shoulder extension, flexion, and abduction. Using a previously validated method implemented in the programming platforms. 5. , 3D shapes were registered to the pairs of biplanar images for each arm position and the corresponding functional HHM was measured. Bivariate correlations were assessed between the CT-based HHM and each functional arm position. Result. HHM in 45 degrees of flexion and extension both showed significant and strong correlations (r>0.66 and P<0.01) with HHM assessed in the supine position. However, such a high correlation was not found for relaxed standing and 45 abduction. Conclusion. Although HHM in a supine position correlates with HHM in 45-degree extension and flexion, it is poorly associated with the HHM in abduction and relaxed standing. These results may suggest the inclusion of more functionally-relevant patient positioning toward better-informed shoulder arthroplasty planning. Acknowledgement. Funding from PRosPERos-II Project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 105 - 105
14 Nov 2024
Spoo S Garcia F Braun B Cabri J Grimm B
Full Access

Introduction. The objective assessment of shoulder function is important for personalized diagnosis, therapies and evidence-based practice but has been limited by specialized equipment and dedicated movement laboratories. Advances in AI-driven computer vision (CV) using consumer RGB cameras (red-blue-green) and open-source CV models offer the potential for routine clinical use. However, key concepts, evidence, and research gaps have not yet been synthesized to drive clinical translation. This scoping review aims to map related literature. Method. Following the JBI Manual for Evidence Synthesis, a scoping review was conducted on PubMed and Scholar using search terms including “shoulder,” “pose estimation,” “camera”, and others. From 146 initial results, 27 papers focusing on clinical applicability and using consumer cameras were included. Analysis employed a Grounded Theory approach guided iterative refinement. Result. Studies primarily used Microsoft Kinect (infrared-based depth sensing, RGB camera; discontinued) or monocular consumer cameras with open-source CV-models, sometimes supplemented by LiDAR (laser-based depth sensing), wearables or markers. Technical validation studies against gold standards were scarce and too inconsistent for comparison. Larger range of motion (RoM) movements were accurately recorded, but smaller movements, rotations and scapula tracking remained challenging. For instance, one larger validation study comparing shoulder angles during arm raises to a marker-based gold-standard reported Pearson's R = 0.98 and a standard error of 2.4deg. OpenPose and Mediapipe were the most used CV-models. Recent efforts try to improve model performance by training with shoulder specific movements. Conclusion. Low-cost, routine clinical movement analysis to assess shoulder function using consumer cameras and CV seems feasible. It can provide acceptable accuracy for certain movement tasks and larger RoM. Capturing small, hidden or the entirety of shoulder movement requires improvements such as via training models with shoulder specific data or using dual cameras. Technical validation studies require methodological standardization, and clinical validation against established constructs is needed for translation into practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 53 - 53
17 Apr 2023
Woodhead J Paxton J
Full Access

While the COVID-19 pandemic highlighted the need for more accessible anatomy instruction tools, it is also well known that the time allocated to practical anatomy teaching has reduced in the past decades. Notably, the opportunity for anatomy students to learn osteology is not prioritised, nor is the ability of students to appreciate osteological variation. As a potential method of increasing accessibility to bone models, this study describes the process of developing 3D-printed replicas of human bones using a combination of structured light scanning (SLS) technology and 3D printing. Human bones were obtained from the Anatomy Lab at the University of Edinburgh and were digitised using SLS via an Einscan H scanner. The resulting data was then used to print multiple replicas of varying materials, colours, scales and resolutions on an Ultimaker S3 3D printer. To gather opinion on these models and their variables, surveys were completed by anatomy students and educators (n=57). Data was collected using a Likert scale response, as well as free-text answers to gather qualitative information. 3D scans of the scapula, atlas (C1 vertebrae) and femur were successfully obtained. Plastic replicas were produced with defined variables in 4 separate stations e.g. different colours, to obtain results from survey respondents. For colour, 87.7% of survey respondents preferred white models, with 7% preferring orange and 5.3% preferring blue. For material, 47.4% of respondents preferred PLA (Polylactic acid), while 33.3% preferred ABS (Acrylonitrile butadiene styrene), 12.3% preferred Pet-G (Polyethylene terephthalate glycol), 3.5% preferred Glassbend and 3.5% had no preference. Additional results based on scale and resolution were also collected. This initial study has demonstrated a proof-of-concept workflow for SLS technology to be combined with 3D printing to produce plastic replicas of human bones. Our study has provided key information about the colour, scale, material and resolution required for these models. Our future work will focus on determining accuracy of the models and their use as teaching aids for osteology education


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 72 - 72
1 Dec 2021
Komperla S Giles W Flatt E Gandhi MJ Eyre-Brook AE Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract. Shoulder replacements have evolved and current 4th generation implants allow intraoperative flexibility to perform anatomic, reverse, trauma, and revision shoulder arthroplasty. Despite high success rates with shoulder arthroplasty, complication rates high as 10–15% have been reported and progressive glenoid loosening remains a concern. Objectives. To report medium term outcomes following 4th generation VAIOS® shoulder replacement. Methods. We retrospectively analysed prospectively collected data following VAIOS® shoulder arthroplasty performed by the senior author between 2014–2020. This included anatomical (TSR), reverse(rTSR), revision and trauma shoulder replacements. The primary outcome was implant survival (Kaplan-Meier analysis). Secondary outcomes were Oxford Shoulder Scores (OSS), radiological outcomes and complications. Results. 172 patients met our inclusion criteria with 114 rTSR, 38 anatomical TSR, and 20 hemiarthroplasty. Reverse TSR- 55 primary, 31 revision, 28 for trauma. Primary rTSR- 0 revisions, average 3.35-year follow-up. Revision rTSR-1 revision (4.17%), average 3.52-year follow-up. Trauma rTSR- 1 revision (3.57%), average 4.56-year follow-up OSS: Average OSS improved from 15.39 to 33.8 (Primary rTSR) and from 15.11 to 29.1 (Revision rTSR). Trauma rTSR-Average post-operative OSS was 31.4 Anatomical TSR38 patients underwent primary anatomical TSR, 8 were revisions following hemiarthroplasty. In 16/38 patients, glenoid bone loss was addressed by bone grafting before implantation of the metal back glenoid component. Mean age at time of surgery was 68.3 years (53 – 81 years). Mean follow-up was 34 months (12 – 62 months). The average Oxford shoulder score improved from 14 (7–30) to 30 (9–48). There were 3 revisions (7.8%); two following subscapularis failure requiring revision conversion to reverse shoulder replacement and one for glenoid graft failure. Conclusions. The medium-term results of the VAIOS® system suggest much lower revision rates across multiple configurations of the system than previously reported, as well as a low incidence of scapular notching. This system allows conversion to rTSR during primary and revision surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 71 - 71
1 Dec 2021
Giles W Komperla S Flatt E Gandhi M Eyre-Brook A Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract. Background/Objectives. The incidence of reverse total shoulder replacement (rTSR) implantation is increasing globally, but apprehension exists regarding complications and associated challenges. We retrospectively analysed the senior author's series of rTSR from a tertiary centre using the VAIOS shoulder system, a modular 4th generation implant. We hypothesised that the revision rTSR cohort would have less favourable outcomes and more complications. Methods. 114 patients underwent rTSR with the VAIOS system, over 7 years. The primary outcome was implant survival. Secondary outcomes were Oxford shoulder scores (OSS), radiographic analysis (scapular notching, tuberosity osteolysis, and periprosthetic radiolucent lines) and complications. Results. There were 55 Primary rTSR, 31 Revision rTSR and 28 Trauma rTSR. Implant survival: Primary rTSR- 0 revisions, average 3.35-year follow-up. Revision rTSR-1 revision (4.17%), average 3.52-year follow-up. Trauma rTSR- 1 revision (3.57%), average 4.56-year follow-up OSS: Average OSS improved from 15.39 to 33.8 (Primary rTSR) and from 15.11 to 29.1 (Revision rTSR). Average post-operative OSS for the Trauma rTSR was 31.4 Radiological analysis and complications: Low incidence of scapular notching One hairline fracture below the tip of stem, noted incidentally, which required no treatment. One periprosthetic fracture after alcohol related fall. Treated non-surgically One joint infection requiring two-stage revision to rTSR. One dislocation noted at 2 year follow up. This patient had undergone nerve grafting within 6 months of rTSR for axillary nerve injury sustained during the original fracture dislocation. One acromial fracture with tibial and distal humeral fracture after a fall. Conclusions. The 4th generation modular VAIOS implant is a reliable option for various indications. The revision rTSR cohort had favourable outcomes with low complication rates. In this series, early-to-medium term results suggest lower revision rates and good functional outcomes when compared to published reports. We plan to monitor long-term implant survivorship and patient reported outcomes. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 18 - 18
1 Nov 2021
Troiano E Facchini A Meglio MD Peri G Aiuto P Mondanelli N Giannotti S
Full Access

Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the glenoid defect according to the CT-based preoperative planning. The Bio-component was implanted with stable screws fixation on residual scapula. We decided not to replace the humeral component since it was stable and showed no signs of mobilization. Results. The new bio-implant was stable, and the patient gained a complete functional recovery of the shoulder. The scheduled radiological assessments up to 12 months showed no signs of bone resorption or mobilization of the glenoid component. Conclusions. The use of bone allograft in revision surgery after a RSA is a versatile and effective technique to treat severe glenoid bone loss and to improve the global stability of the implant. Furthermore, it represents a viable alternative to autologous graft since it requires shorter operative times and reduces graft site complications. There are very few data available regarding the use of allografts and, although the first studies are encouraging, further investigation is needed to determine the biological capabilities of the transplant and its validity in complex revisions after RSA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 119 - 119
1 Nov 2021
Facchini A Troiano E Saviori M Meglio MD Ghezzi R Mondanelli N Giannotti S
Full Access

Introduction and Objective. The aim of this study was to evaluate whether CT-based pre-operative planning, integrated with intra-operative navigation could improve glenoid baseplate fixation and positioning by increasing screw length, reducing number of screws required to obtain fixation and increasing the use of augmented baseplate to gain the desired positioning. Reverse total shoulder arthroplasty (RSA) successfully restores shoulder function in different conditions. Glenoid baseplate fixation and positioning seem to be the most important factors influencing RSA survival. When scapular anatomy is distorted (primitive or secondary), optimal baseplate positioning and secure screw purchase can be challenging. Materials and Methods. Twenty patients who underwent navigated RSA (oct 2018 and feb 2019) were compared retrospectively with twenty patients operated on with a conventional technique. All the procedures were performed by the same surgeon, using the same implant in cases of eccentric osteoarthritis or complete cuff tear. Exclusion criteria were: other diagnosis as proximal humeral fractures, post-traumatic OA previously treated operatively with hardware retention, revision shoulder arthroplasty. Results. The NAV procedure required mean 11 (range 7–16) minutes more to performed than the conventional procedure. Mean screw length was significantly longer in the navigation group (35.5+4.4 mm vs 29.9+3.6 mm; p . .001). Significant higher rate of optimal fixation using 2 screws only (17 vs 3 cases, p . .019) and higher rate of augmented baseplate usage (13 vs 4 cases, p . .009) was also present in the navigation group. Signficant difference there is all in function outcomes, DASH score is 15.7 vs 29.4 and constant scale 78.1 vs 69.8. Conclusions. The glenoid component positioning in RSA is crucial to prevent failure, loosening and biomechanical mismatch, coverage by the baseplate of the glenoid surface, version, inclination and offset are all essential for implant survival. This study showed how useful 3D CT-based planning helps in identifying the best position of the metaglena and the usefulness of receiving directly in the operation theater real-time feedback on the change in position. This study shows promising results, suggesting that improved baseplate and screw positioning and fixation is possible when computer-assisted implantation is used in RSA comparing to a conventional procedure


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1105 - 1109
1 Aug 2006
Kandemir U Allaire RB Jolly JT Debski RE McMahon PJ

Our aim was to determine the most repeatable three-dimensional measurement of glenoid orientation and to compare it between shoulders with intact and torn rotator cuffs. Our null hypothesis was that glenoid orientation in the scapulae of shoulders with a full-thickness tear of the rotator cuff was the same as that in shoulders with an intact rotator cuff. We studied 24 shoulders in cadavers, 12 with an intact rotator cuff and 12 with a full-thickness tear. Two different observers used a three-dimensional digitising system to measure glenoid orientation in the scapular plane (ie glenoid inclination) using six different techniques. Glenoid version was also measured. The overall precision of the measurements revealed an error of less than 0.6°. Intraobserver reliability (correlation coefficients of 0.990 and 0.984 for each observer) and interobserver reliability (correlation coefficient of 0.985) were highest for measurement of glenoid inclination based on the angle obtained from a line connecting the superior and inferior points of the glenoid and that connecting the most superior point of the glenoid and the most superior point on the body of the scapula. There were no differences in glenoid inclination (p = 0.34) or glenoid version (p = 0.12) in scapulae from shoulders with an intact rotator cuff and those with a full-thickness tear. Abnormal glenoid orientation was not present in shoulders with a torn rotator cuff


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 354 - 354
1 Jul 2014
Eraly K Stoffelen D Van Geel N Demol J Debeer P
Full Access

Summary Statement. In this study, excellent positioning of custom-made glenoid components was achieved using patient-specific guides. Achieving the preoperatively planned orientation of the component improved significantly and more screws were located inside the scapular bone compared to implantations without such guide. Introduction. Today's techniques for total or reverse shoulder arthroplasty are limited when dealing with severe glenoid defects. The available procedures, for instance the use of bone allografts in combination with available standard implants, are technically difficult and tend to give uncertain outcomes (Hill et al. 2001; Elhassan et al. 2008; Sears et al. 2012). A durable fixation between bone and implant with optimal fit and implant positioning needs to be achieved. Custom-made defect-filling glenoid components are a new treatment option for severe glenoid defects. Despite that the patient-specific implants are uniquely designed to fit the patient's bone, it can be difficult to achieve the preoperatively planned position of the component, resulting in less optimal screw fixation. We hypothesised that the use of a patient-specific guide would improve implant and screw positioning. The aim of this study was to evaluate the added value of a newly developed patient-specific guide for implant and screw positioning, by comparing glenoid implantations with and without such guide. Patients & Methods. Large glenoid defects, representative for the defects encountered in clinical practice, were created in ten cadaveric shoulders. A CT scan of each cadaver was taken to evaluate the defects and to generate three-dimensional models of the scapular bones. Based on these models, custom glenoid components were designed. Furthermore, a newly developed custom guide was designed for five randomly selected shoulders. New CT scans were taken after implantation to generate 3D models of the bone and the implanted component and screws. This enabled to compare the experimentally achieved and preoperatively planned reconstruction. The location and orientation of the glenoid component and screw positioning were determined and differences with the optimal preoperative planning were calculated. Results. An excellent component positioning (difference in location: 1.4±0, 7mm; difference in orientation: 2, 5±1, 2°) was achieved when using the guide compared to implantations without guidance (respectively 1, 7±0, 5mm; 5, 1±2, 3°). The guide improved component orientation significantly (P<0.1). After using the guide, all screws were positioned inside the scapular bone whereas 25% of the screws placed without guidance were positioned outside the scapular bone. Discussion/Conclusion. In this study, excellent positioning of custom-made glenoid components was achieved using patient-specific guides. Achieving the preoperatively planned orientation of the component improved significantly and more screws were located inside the scapular bone compared to implantations without such guide


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 87 - 87
1 Apr 2017
Simpson A Dattani R Sankey R
Full Access

Background. Radiological and clinical results of total shoulder arthroplasty are dependent upon ability to accurately measure and correct glenoid version. There are a variety of imaging modalities and computer-assisted reconstruction programmes that are employed with varying degrees of success. We have compared three freely available modalities: unformatted 2D CT; formatted 2D CT; and 3D CT reconstructions. Methods. A retrospective analysis of 20 shoulder CT scans was performed. Glenoid version was measured at the estimated mid-point of the glenoid from unformatted 2D CT scans (Scapula body method) and again following formatting of 2D CT scans in the plane of the scapula (Friedman method). 3D scapula reconstructions were also performed by downloading CT DICOM images to OSIRIX 6 and plotting ROI points on Friedman's axis to most accurately define glenoid version. Both measurements taken from 2D CT were compared to those from 3D CT. Eleven CT scans were of male patients, 9 female. Mean age was 55.2 years (Range: 23–77 years). Fourteen scans were performed for trauma, 6 for arthroplasty. Twelve scans were of the left shoulder. Results. Mean glenoid version as measured on: unformatted 2D CT was −4.51 degrees (−29.67 – 7.22 degrees); formatted 2D CT was −2.04 degrees (−36.96 – 9.72 degrees); and on 3D reconstructions was −3.01 degrees (−32.57 – 14.33 degrees). Sixty percent of measurements taken on formatted 2D CT were within 3 degrees of those taken on 3D reconstructions, with 85% within 5 degrees. This proportion fell to 30% and 50% respectively on unformatted 2D CT. Discussion. In this small study measurements of glenoid version taken on formatted 2D CT demonstrated greater accuracy than unformatted 2D CT when comparing to 3D reconstruction measurements as the gold standard. Although we demonstrated no significant statistical difference between measurements in this pilot study we believe significance will be obtained as we increase our sample size


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 24 - 24
1 Jan 2017
Bola M Ramos A Simões J
Full Access

Total shoulder arthroplasty is a well-tested procedure that offers pain relief and restores the joint function. However, failure rate is still high, and glenoid loosening is pointed as the main reason in orthopedic registers. In order to understand the principles of failure, the principal strain distributions after implantation with Comprehensive® Total Shoulder System of Biomet® were experimental and numerically studied to predict bone behavior. Fourth generation composite left humerus and scapula from Sawbones® were used. These were implanted with Comprehensive® Total Shoulder System (Biomet®) with a modular Hybrid® glenoid base and Regenerex® glenoid and placed in situ by an experienced surgeon. The structures were placed in order to simulate 90º abduction, including principal muscular actions. Muscle forces used were as follows: Deltoideus 300N, Infraspinatus 120N, Supraspinatus 90N, Subscapularis 225N. All bone structures were modeled considering cortical and the trabecular bone of the scapula. The components of prosthesis were placed in the same positions than those in the in vitro models. Geometries were meshed with tetrahedral linear elements, with material properties as follows: Elastic modulus of cortical bone equal to 16 GPa, elastic modulus of trabecular bone equal to 0.155 GPa, polyethylene equal to 1GPa and titanium equal to 110 GPa. The assumed Poisson's ratio was 0.3 in all except for polyethylene where we assumed a value of 0.4. The prosthesis was considered as glued to the adjacent bone. The finite element model was composed of 336 024 elements. At the glenoid cavity, the major influence of the strain distributions was observed at the posterior-superior region, in both cortical and trabecular bone structures. The system presents critical region around holes of fixation in glenoid component. At the trabecular bone, the maximum principal strains at the posterior-superior region ranged from 2250 µε to 3000 µε. While at the cortical bone, the maximum principal strains were 300 µε to 400 µε. The results observed evidence some critical regions of concern and the effect of implant in the bone strains mainly at the posterior-superior region of the glenoid cavity is pronounced. This indicates that this region is more affected by the implant if bone remodeling is a concern and it is due to the strain-shielding effect, which has been connected with loosening of the glenoid component


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 23 - 23
1 Nov 2018
Sano H Komatsuda T Inawashiro T Sasaki D Noguchi M Irie T Abe H Abrassart S
Full Access

Latarjet procedure (transfer of coracoid process to the anterior glenoid rim) has been widely used for severe anterior shoulder instability. The purpose of the present study was to investigate the intraarticular stress distribution after this procedure to clarify the pathomechanism of its postoperative complications. CT-DICOM data of the contralateral healthy shoulder in 10 patients with unilateral anterior shoulder instability (9 males and 1 female, age: 17–49) was used for the present study. Three-dimensional finite element models of the glenohumeral joint was developed using software, Mechanical Finder (RCCM, Japan). In each shoulder, a 25% bony defect was created in the anterior glenoid cavity, where coracoid process was transferred using two half-threaded screws. The arm position was determined as 0-degree and 90-degree abduction. While medial margin of the scapula was completely constrained, a standard compressive load (50 N) toward the centre of the glenoid was applied to the lateral wall of the greater tuberosity. A tensile load (20N) was also applied to the tip of coracoid process along the direction of conjoint tendon. Then, elastic analysis was performed, and the distribution pattern of Drucker-Prager equivalent stress was investigated in each model. The proximal half of the coracoid represented significantly lower equivalent stress than the distal half (p < 0.05). In particular, the lowest mean equivalent stress was seen in its proximal-medial-superficial part. On the other hand, a high stress concentration newly appeared in the antero-inferior aspect of the humeral head exactly on the site of coracoid bone graft. We assumed that the reduction of mean equivalent stress in the proximal half of the coracoid was caused by the stress shielding, which may constitute one of the pathogenetic factors of its osteolysis. A high stress concentration in the humeral head may eventually lead shoulder joint to osteoarthritis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 353 - 353
1 Jul 2014
Hamilton M Diep P Roche C Flurin P Wright T Zuckerman J Routman H
Full Access

Summary Statement. Reverse shoulder design philosophy can impact external rotation moment arms. Lateralizing the humerus can increase the external rotator moment arms relative to normal anatomy. Introduction. The design of reverse shoulders continues to evolve. These devices are unique in that they are not meant to reproduce the healthy anatomy. The reversal of the fulcurm in these devices impacts every muscle that surrounds the joint. This study is focused on analyzing the moment arms for the rotator cuff muscles involved in internal and external rotation for a number of reverse shoulder design philosophies. Methods. Four of the most common design philosophies were chosen. The first, a Grammont style prosthesis, with a center of rotation (COR) on the glenoid face and a humeral cup countersunk into the proximal humerus (MGMH). The second concept is the MGMH design lateralised by a 10mm bone graft (BIO). The third concept has a lateralised glenosphere COR and a humeral component inside the proximal humerus (LGMH). The fourth design has a medialised COR with a humeral component placed on top of the humerus (MGLH). This places the humerus further lateral than the previous designs. For each component set, a representative implant was modeled based on published specifications. Each design was implanted into the same digital bone models (consisting of a humerus, scapula, clavicle, and ribcage) following the manufacturer's recommended surgical technique. The muscles analyzed were the posterior-deltoid (PD), subscapularis (SSC), infraspinatus (IS), and teres minor (TM). These muscles were allowed to wrap around the bone of the scapula and proximal humerus through the range of motion. All muscle origin and insertion points were kept constant throughout the analysis. The assemblies were externally rotated from an initial position of 45° internal rotation to 45° of external rotation of the humerus with the arm at 0° of abduction. The moment arms for all muscles were compared to those calculated for the anatomic shoulder. Results. All the rotator cuff muscles displayed a similar trend with the reverse shoulder. The external rotators all had similar moment arm values at neutral (IS∼22mm, TM∼20mm), but increased at rates proportional to their humeral offsets with external rotation (IS-MGLH 32.3mm, LGMH 27.5mm, MGMH and BIO 26.25mm; TM-MGLH 31.3mm, LGMH 27.8mm, MGMH and BIO 26.5mm). The SSC internal rotation moment arm remains roughly constant at 20mm for the anatomic shoulder, but varies widely from 45° external to 45° internal rotation with the different designs (MGLH 31.4mm to 6.7mm; MGMH 25.1mm to 11.2mm; LGMH 26.2mm to 10.8mm; BIO 25.4mm to 4.8mm). The PD moment arm is increased relative to the anatomic shoulder during external rotation for the MGLH design (9.3mm vs. 7.4mm). The other designs exhibit a decrease in the moment arm of this muscle relative to the anatomic design (LGMH 7.3mm, MGMH 5.8mm, BIO 6.4mm). Discussion. The lateral offset between the center of humeral axis and the muscle insertion on the humerus dominates the external rotation moment arm value through this range of motion. This is evident by the increase in the moment arms with external rotation for the different reverse shoulder designs. The increase in external rotation efficiency for the external rotators and PD could play a critical role in post-operative external rotation strength and motion