Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 42 - 42
1 Oct 2014
Maratt J Esposito C McLawhorn A Carroll K Jerabek S Mayman D
Full Access

Sagittal pelvic tilt (PT) has been shown to effect the functional position of acetabular components in patients with total hip replacements (THR). This change in functional component position may have clinical implications including increased likelihood of wear or dislocation. Surgeons can use computer-assisted navigation intraoperatively to account for a patient's pelvic tilt and to adjust the position of the acetabular component. However, the accuracy of this technique has been questioned due to the concern that PT may change after THR. The purpose of this study was to measure the change in PT after THR, and to determine if preoperative clinical and radiographic parameters can predict PT changes after THR. 138 consecutive patients who underwent unilateral THR by one surgeon received standing bi-planar lumbar spine and lower extremity radiographs preoperatively and six weeks postoperatively. Patients with prior contralateral THR, conversion THR and instrumented lumbosacral fusions were excluded. PT and pelvic incidence (PI) were measured preoperatively for each patient, and PT was measured on the postoperative imaging. A negative value for PT indicated posterior pelvic tilt. Patient demographics were collected from the chart. Average age was 56.8±10.9 years, average BMI was 28.3±6.0 kg/m2, and 67 patients (48.6%) were female. Mean preoperative pelvic tilt was 0.6°±7.3° (range: −19.0° to 17.9°). We found greater than 10° of sagittal PT in 23 out of 138 (16.6%) patients in this sample. Mean post-operative pelvic tilt was 0.3°±7.4° (range: −18.4° to 15.0°). Mean change in pelvic tilt was −0.3°±3.6° (range: −9.6° to 13.5°). PT changed by less than 5° in 119 of 138 patients (86.2%). The mean difference in pre-operative and post-operative PT is not statistically significant (p = 0.395). Pre-operative PT was strongly correlated with post-operative PT (r2 = 0.88, p = 0.0001) (Figure 1). There was not a statistically significant relationship between PI and change in PT (r2 = −0.16, p = 0.06). In conclusion, based on the variability in pelvic tilt in this study population and the relatively small change in pelvic tilt following THA tilt-adjustment of the acetabular component position based on standing pre-operative imaging is likely to be of benefit in the majority of patients undergoing navigated THA. However, we have been unable to predict the relatively rare occurrence of a large change in pelvic tilt, which would confound tilt-adjusted component position


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in sagittal pelvic tilt. An anterior pelvic tilt of 1° correlated with 1.02° of increased cranial retroversion and 0.76° of increased central retroversion. Conclusion. This study has demonstrated that patients with symptomatic AR have both an externally rotated hemipelvis and increased anterior projection of the iliac wing compared to a control group of asymptomatic patients. Functional sagittal pelvic positioning was also found to affect AR in symptomatic patients: the acetabulum was more retroverted in the supine position compared to standing position. Changes in acetabular version correlate with the change in sagittal pelvic tilt. These findings should be taken into account by surgeons when planning acetabular correction for AR with periacetabular osteotomy. Cite this article: Bone Joint J 2024;106-B(2):128–135


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 8 - 8
1 Feb 2021
Pour AE Patel K Anjaria M Schwarzkopf R Dorr L Lazennec J
Full Access

Introduction. Sagittal pelvic tilt (SPT) can change with spinal pathologies and fusion. Change in the SPT can result in impingement and hip instability. Our aim was to determine the magnitude of the SPT change for hip instability to test the hypothesis that the magnitude of SPT change for hip instability is less than 10° and it is not similar for different hip motions. Methods. Hip implant motions were simulated in standing, sitting, sit-to-stand, bending forward, squatting and pivoting in Matlab software. When prosthetic head and liner are parallel, femoral head dome (FHD) faces the center of the liner. FHD moves toward the edge of the liner with hip motions. The maximum distance between the FHD and the center in each motion was calculated and analyzed. To make the results more reliable and to consider the possibility of bony impingement, when the FHD approached 90% of the distance between the liner-center and liner-edge, we considered the hip “in danger for dislocation”. The implant orientations and SPT were modified by 1-degree increments and we used linear regression with receiver operating characteristic (ROC) curve and area under the curve (AUC) to determine the magnitude of SPT change that could cause instability. Results. SPT modification as low as 7° could result in dislocation during pivoting (AUC: 87.5; sensitivity: 87.9; specificity 79.8; p=0.0001). This was as low as 10° for squatting (AUC: 91.5; sensitivity: 100; specificity 75.9; p=0.0001) and as low as 13° for sit-to-stand (AUC: 94.6; sensitivity: 98; specificity 83; p=0.0001). SPT modification affects hip stability more in pivoting than sit-to-stand and squatting. Discussion. Our results show the importance of close collaboration between the hip and spine surgeons in treating patients who undergo THA and spinal fusion. The postoperative SPT modification should be considered for preoperative computer simulation for determining the implant safe zone


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 76 - 76
1 Apr 2019
Vasiljeva K Al-Hajjar M Lunn D Chapman G Redmond A Flatters I Thompson J Jones A
Full Access

Introduction. One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect. Methods. Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin force plates (AMTI) and using a CAST marker set. All patients had good surgical outcomes, confirmed by patient-reported outcomes and were considered well-functioning, based on elective walking speed. Joint contact forces and pelvic motions were obtained from the AnyBody modelling system (AnyBody Technologies, DK). Only gait cycle regions with available force plate data were considered. A finite element model of a 32mm head on a featureless hemispherical polyethylene cup, 0.5mm radial clearance, was used to obtain the contact area from the contact force. A bespoke computational tool was used to analyse patients' gait profiles with and without pelvic motions. The risk of edge contact was measured as a “centre proximity angle” between the cup pole and centre of the contact area, and “edge proximity angle” between the cup pole and the furthest contact area point away from the pole. Pelvic tilt, drop and internal-external rotation were considered one at a time and in combinations. Results. In eight out of 10 patients, the addition of pelvic motions decreased the risk of edge contact during toe-off. There was up to 6° reduction in the proximity angles when pelvic motions were introduced to the gait cycle. In six out of 10 patients, the addition of pelvic motions resulted in an increase in the risk of edge contact during heel-strike with up to 6° increase in the proximity angles. For all patients where these effects were seen, sagittal pelvic tilt was a substantial contributor. Conclusion. The results of this study suggest that pelvic motion play an important role in contact location in THR bearings during loading phase. Both static and dynamic pelvic tilt contribute to the variability in the risk of edge contact. Further tests on larger patient cohorts are required to confirm the trends observed. The outcomes of this study suggest that pre-clinical mechanical and tribological testing of THRs should consider the role of pelvic motion. The outcomes also have implications for establishing surgical positioning safe zones, which are currently based only on risk of dislocation and severe impingement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 50 - 50
1 Feb 2016
Bendaya S Anglin C Lazennec J Allena R Thoumie P Skalli W
Full Access

Component placement and the individual's functional posture play key roles in mechanical complications and hip dysfunction after total hip arthroplasty (THA). The challenge is how to measure these. X-rays lack accuracy and CT scans increase radiation dose. A newer imaging modality, EOSTM, acquires low-dose, simultaneous, perpendicular anteroposterior and lateral views while providing a global view of the patient in a functional standing or sitting position, leading to a 3D reconstruction for parameter calculation. The purpose of the present study was to develop an approach using the EOS system to compare patients with good versus poor results after THA and to report our preliminary experiences using this technique. A total of 35 patients were studied: 17 with good results after THA (G-THA), 18 with poor results (P-THA). The patients were operated on or referred for follow-up to a single expert surgeon, between 2001 and 2011, with a minimum follow-up of at least two years. Acetabular cup orientation differed significantly between groups. Acetabular version relative to the coronal plane was lower in P-THA (32°±12°) compared to G-THA (40°±9°) (p=0.02). There was a strong trend towards acetabular cup inclination relative to the APP being higher in P-THA (45°±9°, compared to 39°±7°; p=0.07). Proportions of P-THA vs. G-THA patients with cup orientation values higher or lower than 1 SD from the overall mean differed significantly and substantially between groups. All revision cases had a least four values outside 1 SD, including acetabular cup orientation, sagittal pelvic tilt, sacral slope, femoral offset and neck-shaft angle. This is the first study to our knowledge to provide acetabular, pelvic and femoral parameters for these two groups and the first to provide evidence that a collection of high/low parameters may together contribute to a poor result. The results show the importance of acetabular component placement, in both inclination and version and the importance of looking at individuals, not just groups, to identify potential causes for pain and functional issues. With the EOS system, a large cohort of individuals can be studied in the functional position relatively quickly and at low dose. This could lead to patient-specific guidelines for THA planning and execution


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 40 - 40
1 May 2016
Meftah M Lipman J Ranawat A Ranawat C
Full Access

Introduction. Accurate and reproducible cup positioning is one the most important technical factors that affects outcomes of total hip arthroplasty (THA). Although Lewinnek's safe zone is the most accepted range for anteversion and abduction angles socket orientation, the effect of fixed lumbosacral spine on pelvic tilt and obliquity is not yet established. Questions:. What is the change in anteversion and abduction angle from standing to sitting in a consecutive cohort of patients undergoing THA?. What is the effect of fixed and flexible spinal deformities on acetabular cup orientation after THA?. Material and Methods. Between July 2011 and October 2011, 68 consecutive unilateral THAs were implanted in 68 patients with a mean age of 71 ± 6 years old. Radiographic evaluation included standing anteroposterior (AP) and lateral pelvic radiographs, and sitting lateral pelvic radiograph, measuring lumbosacral angle (LSA), sacral angle (SA), and sagittal pelvic tilt angle (SPTA). Computer generated 3D pelvis models were used to analyze the correlation between different pelvic tilts and acetabular cup orientation in abduction and anteversion. Results. The mean standing STPA was 3.7º of anterior tilt (range: −9º of anterior tilt to 25º of posterior tilt). The mean SPTA in sitting was −17.7º of posterior tilt (range: −38º of posterior tilt to 7º of anterior tilt). In a fixed spinal deformity (54%) the SPTA was significantly smaller compared to the flexible pelvis group (10º versus 30.9º, p=0.0001). Flexible pelvises (46%) had a posterior tilt from standing to sitting resulting in increased anteversion. Overall, mean change in LSA and SA from standing to sitting was 22.5º and 20.2º, respectively. The mean post-operative functional anteversion and abduction angles were 19.2º and 42.1º, respectively. In the virtual 3D pelvic models, when the abduction angle was between 40 and 45 degrees, anteversion changed of 0.75 degrees for 1 degree of change of pelvic tilt. Discussion. There is a significant change in pelvic tilt from standing to sitting, especially in patients with flexible spines, where the functional anteversion increases with sitting. Patients with a fixed pelvis have significantly less change in sagittal tilt and therefore less change in anteversion from standing to sitting position. Care should be taken to adjust cup positioning in fixed spinal deformity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 50 - 50
1 May 2016
Pierrepont J Stambouzou C Topham M Miles B Boyle R
Full Access

Introduction. The posterior condylar axis of the distal femur is the common reference used to describe femoral anteversion. In the context of Total Hip Arthroplasty (THA), this reference can be used to define the native femoral anteversion, as well as the anteversion of the stem. However, these measurements are fixed to a femoral reference. The authors propose that the functional position of the proximal femur must be considered, as well as the functional relationship between stem and cup (combined anteversion) when considering the clinical implications of stem anteversion. This study investigates the post-operative differences between anatomically-referenced and functionally-referenced stem and combined anteversion in the supine and standing positions. Method. 18 patients undergoing pre-operative analysis with the Trinity OPS® planning (Optimized Ortho, Sydney Australia, a division of Corin, UK) were recruited for post-operative assessment. Anatomic and functional stem anteversion in both the supine and standing positions were determined. The anatomic anteversion was measured from CT and referenced to the posterior condyles. The supine functional anteversion was measured from CT and referenced to the coronal plane. The standing functional anteversion was measured to the coronal plane when standing by performing a 3D/2D registration of the implants to a weight-bearing AP X-ray. Further, functional acetabular anteversion was captured to determine combined functional anteversion in the supine and standing positions. Results. The average anatomical stem anteversion was 9.9° (6.7° to 13.0°). In all cases, the anatomical stem anteversion was different than the measured functional stem anteversion in both the supine and standing positions. The functional femoral anteversion decreased from supine to stand by an average of 7.1° (4.9°−9.2°), suggesting more internal rotation of the femurs when weight-bearing. In all patients, the pelvis rotated posteriorly in the sagittal plane from supine to standing, increasing the functional acetabular anteversion by a mean of 5.1°. Conclusions. Anatomic stem anteversion differs significantly from functional stem anteversion in both the supine and standing positions, as a consequence of the patient specific differences in internal/external rotation of the femur in the functional postures. In the same way that the Anterior Pelvic Plane is now widely recognized as an inappropriate reference for cup orientation due to variation in sagittal pelvic tilt, referencing the femoral stem anteversion to the native anatomy (distal femur) maybe also be misleading and not provide a suitable description of the functional anteversion of the stem. This has implications for determining optimal combined alignment in THA


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims

In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement.

Methods

Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data.


Bone & Joint 360
Vol. 10, Issue 3 | Pages 8 - 10
1 Jun 2021


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims

Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation.

Methods

Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 184 - 191
1 Feb 2017
Pierrepont J Hawdon G Miles BP Connor BO Baré J Walter LR Marel E Solomon M McMahon S Shimmin AJ

Aims

The pelvis rotates in the sagittal plane during daily activities. These rotations have a direct effect on the functional orientation of the acetabulum. The aim of this study was to quantify changes in pelvic tilt between different functional positions.

Patients and Methods

Pre-operatively, pelvic tilt was measured in 1517 patients undergoing total hip arthroplasty (THA) in three functional positions – supine, standing and flexed seated (the moment when patients initiate rising from a seated position). Supine pelvic tilt was measured from CT scans, standing and flexed seated pelvic tilts were measured from standardised lateral radiographs. Anterior pelvic tilt was assigned a positive value.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 845 - 852
1 Jul 2018
Langston J Pierrepont J Gu Y Shimmin A

Aims

It is important to consider sagittal pelvic rotation when introducing the acetabular component at total hip arthroplasty (THA). The purpose of this study was to identify patients who are at risk of unfavourable pelvic mobility, which could result in poor outcomes after THA.

Patients and Methods

A consecutive series of 4042 patients undergoing THA had lateral functional radiographs and a low-dose CT scan to measure supine pelvic tilt, pelvic incidence, standing pelvic tilt, flexed-seated pelvic tilt, standing lumbar lordotic angle, flexed-seated lumbar lordotic angle, and lumbar flexion. Changes in pelvic tilt from supine-to-standing positions and supine-to-flexed-seated positions were determined. A change in pelvic tilt of 13° between positions was deemed unfavourable as it alters functional anteversion by 10° and effectively places the acetabular component outside the safe zone of orientation.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 387 - 392
1 Sep 2016
Morris WZ Fowers CA Yuh RT Gebhart JJ Salata MJ Liu RW

Objectives

The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology.

Methods

Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s t-test and the difference in incidence of cam morphology was assessed using a chi-squared test. The significance level for all tests was set at p < 0.05.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 580 - 589
1 May 2014
Nakahara I Takao M Sakai T Miki H Nishii T Sugano N

To confirm whether developmental dysplasia of the hip has a risk of hip impingement, we analysed maximum ranges of movement to the point of bony impingement, and impingement location using three-dimensional (3D) surface models of the pelvis and femur in combination with 3D morphology of the hip joint using computer-assisted methods. Results of computed tomography were examined for 52 hip joints with DDH and 73 normal healthy hip joints. DDH shows larger maximum extension (p = 0.001) and internal rotation at 90° flexion (p < 0.001). Similar maximum flexion (p = 0.835) and external rotation (p = 0.713) were observed between groups, while high rates of extra-articular impingement were noticed in these directions in DDH (p < 0.001). Smaller cranial acetabular anteversion (p = 0.048), centre-edge angles (p < 0.001), a circumferentially shallower acetabulum, larger femoral neck anteversion (p < 0.001), and larger alpha angle were identified in DDH. Risk of anterior impingement in retroverted DDH hips is similar to that in retroverted normal hips in excessive adduction but minimal in less adduction. These findings might be borne in mind when considering the possibility of extra-articular posterior impingement in DDH being a source of pain, particularly for patients with a highly anteverted femoral neck.

Cite this article: Bone Joint J 2014;96-B:580–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 751 - 759
1 Jun 2010
Tsirikos AI Garrido EG

A review of the current literature shows that there is a lack of consensus regarding the treatment of spondylolysis and spondylolisthesis in children and adolescents. Most of the views and recommendations provided in various reports are weakly supported by evidence. There is a limited amount of information about the natural history of the condition, making it difficult to compare the effectiveness of various conservative and operative treatments. This systematic review summarises the current knowledge on spondylolysis and spondylolisthesis and attempts to present a rational approach to the evaluation and management of this condition in children and adolescents.