Introduction:. Since2007, we have used CT-based fluoroscopy-matching navigation system (Vector Vision Hip Ver.3.5.2, BrainLAB, Germany) in revision total hip arthroplasty. This system completes the registration procedure semi-automatically by matching the contours of fluoroscopic images and touching 3 adequate points to the contours of 3D bone model created in the computer. Registration procedure using fluoroscopic figures has finished before making surgical incision. It needs no elongation time during the operation. The objective of this study was to evaluate the accuracy of CT-based fluoroscopy-matching navigation system in
Introduction: Although Metal wires and cables are popular tools to fix greater trochanter in
Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with
Introduction and Aims: The incidence and technical complexity of revision total hip arthroplasty (THA) has and will continue to increase dramatically. We report the results of
Introduction and Aims: Currently, multiple femoral component types and sizes exist for primary total hip arthroplasty. However, component sizes for small femoral geometry are generally not available. The purpose of this study is to present the short-term use of a femoral component with sizes that extend into small femoral morphometry applications. Method: Between November 2001 and December 2003, 20 primary THA cases and three
Introduction:. Acetabular revision Jumbo cups are used in revision hip surgeries to allow for large bone to implant contact and stability. However, jumbo cups may also result in hip center elevation and instability. They may also protrude through anterior wall leading to ilopsoas tendinitis. Methods:. The study was conducted using two methods:. Computer simulation study. 265 pelvic CT scans consisting of 158 males and 107 females were converted to virtual 3-dimensional bones. The average native acetabular diameter was 52.0 mm, SD = 4.0 mm (males in 52.4 mm, SD = 2.8 mm and 46.4 mm, SD = 2.6 mm in females). Images were analyzed by custom CT analytical software (SOMA™ V.3.2). 1. and over-sized reaming was simulated. Four distinct points, located in and around the acetabular margins, were used to determine the reamer sphere. Points 1, 2, 3 were located at the inferior and inferior-medial acetabular margins, and Point 4 was located superiorly and posteriorly in the acetabulum to simulate a bony defect in this location, Point 4 was placed at 10%, 20%, 30%, 40%, 50% and 60% of the distance from the superior – posterior margin of the acetabular rim to the sciatic notch to simulate bony defects of increasing size. (Figure 1). Radiographical study. Retrospective chart review of patient records for all cementless acetabular revisions utilizing jumbo cups between January 1, 1998 and March 30, 2012 at UCFS (98 patients with 57 men, 41 women). Jumbo cups: ≥66 mm in males; <62 mm in females. Reaming was directed inferiorly to the level of the obturator foramen to place the inferior edge of the jumbo cup at the inferior acetabulum. To determine the vertical position of the hip center, a circle was first made around both the jumbo and the contralateral acetabular surfaces using Phillips iSite PACS software. The center of this circle was assumed to correspond to the “hip center”. The height of the hip center was estimated by measuring the height of a perpendicular line arising from the interteardrop line (TL) and ending at the hip center. Results:. The computer simulation and radiographic analysis deomonstrated similar results. The computer simulation predicted that the hip center shifted superiorly and anteriorly as the reamer size increased. The hip center shifted 0.27 mm superiorly and 0.02 mm anteriorly for every millimeter in diameter increased for the reaming. (Figure 2) Anterior column bone removal was increased 0.86 mm for every 1 mm of reamer size increase. (Figure 3). Results of radiographical study is shown in Table bellow:. Discussion:. Use of a jumbo cup in
Constrained liners are a tantalizing solution to both prevent and treat instability, as they markedly increase the force needed for a dislocation to occur. They have, however, several important negatives that the surgeon must consider before entertaining their use including: Increased stresses at the implant bone interface which can increase the risk of loosening or cause catastrophic failure in the early post-operative period; Decreased range of motion with a greater risk of impingement; and Usually require an open reduction if they dislocate or otherwise fail. Given the limitations of constrained liners, we have looked to dual mobility articulations as an alternative to constrained liners in the past five years in our practice, including patients with abductor deficiency. We retrospectively compared a consecutive series of
Background: Infection diagnosis in THA remains difficult in some cases. Intraoperative analysis of frozen sections is related to the high sensitivity, specificity, positive predictive value, negative predictive value and accuracy. However, it is a technically demanding procedure and is not a universally accepted method. In the present study, we compared interleukin-6 (IL6) serum level with the erythrocyte sedimentation rate (ESR), the level of C-reactive protein (CRP) and the analysis of frozen sections of intraoperative specimens (FS). Materials: Sixty-nine patients with a THA needing a reoperation due to a suspected infection or another aseptic failure were studied. Patients with chronic inflam-matory diseases, antibiotic treatment prior to surgery, Paget’s diseases and immunodeficiency syndromes were excluded from the study. The mean age at the time of the operation was 68 years old (range: 39 to 91). ESR, CRP and the serum level of IL6 were measured in blood samples before surgery. The cut-off levels were: ESR: ≥ 32 mm/hr, CRP: ≥ 3.2 mg/dl and interleukin-6 ≥ 12 pg/ml. Intraoperatively, samples of tissues were taken to be analyzed immediately on FS, to be routinely processed at the moment and to be referred for bacteriological cultures and histological study. Results: Eleven (16%) of the 69 hips were infected. ESR showed a sensitivity of 0.72 (0.41 to 1.00), a specificity of 0.86 (0.76 to 0.95), a positive predictive value of 0.50 (0.22 to 0.77), and a negative predictive value of 0.94 (0.84 to 1.00).CRP showed a sensitivity of 0.72 (0.41 to 1.00), a specificity of 0.91 (0.83 to 0.99), a positive predictive value of 0.61 (0.31 to 0.91), and a negative predictive value of 0.94 (0.87 to 1.00). IL6 showed a sensitivity of 0.36 (0.30 to 0.69), a specificity of 0.94 (0.88 to 1.00), a positive predictive value of 0.57 (0.13 to 1.00), and a negative predictive value of 0.88 (0.80 to 0.97). The evaluation of the FS showed a sensitivity of 0.81 (0.54 to 1.00), a specificity of 0.98 (0.94 to 1.00), a positive predictive value of 0.90 (0.66 to 1.00), and a negative predictive value of 0.96 (0.91 to 1.00).The combination of CRP and IL6 identified all patients with deep infection of the implant and showed a sensitivity of 0.57 (0.13 to 1.00), a specificity of 1.00 (0.99 to 1.00), a positive predictive value of 1.00 (0.87 to 1.00), and a negative predictive value of 0.94 (0.87 to 1.00). Conclusion: In this study, we obtained similar results combining CRP and IL6 as with the analysis of the frozen sections, which has been in the past our first option to determine whether a THA is infected or not. IL6 and CRP may be used as a valuable routine diagnostic tool in
One hundred and thirty-one cemented femoral stems inserted during revision total hip arthroplasty were reviewed to determine component survival. Harris Hip scores and complete radiographs were analysed. Survival at 10.5 years was 86.9%. Radiographically, 76.9% of the remaining components were classified as stable or possibly loose. Chi-square analysis of demographic and surgical factors determined age <
60 years, male gender and stems >
200 mm in length contributed significantly to failure (p <
0.05). Contrary to published results, we found that longer stems were more susceptible to failure.
The aim of this study is the presentation of the results in 48 cases of
Introduction and Aims: The use of porous coated femoral stems in revision hip arthroplasty has been associated with a high rate of complications including femoral fracture, femoral perforation and eccentric reaming. The purpose is to determine if using a distally slotted-fluted femoral stem is associated with lower incidence of the above three intra-operative complications. Method: The intra-operative complications of 175 cementless revision total hip arthropasties (THA) using a distally slotted-fluted femoral stem were reviewed. Three categories of complications were recorded: femoral fracture, femoral perforation and eccentric reaming. Radiographic evaluation was based on standard antero-posterior and lateral views of the hip joint performed in the intra-operative or immediate post-operative period. Statistical analysis for factors associated with complications was performed using the chi-square test. Results: Intra-operative complications occurred in 16 patients (9.1%). There was no statistically significant association between complication rate and type of surgical approach, stem length, stem diameter, or host bone quality. The complication rate was significantly lower than the 44% total complication rate previously reported utilising a long, solid, extensively coated revision stem without a slot or flute (p<
.01). These results are consistent with laboratory testing, which revealed significantly lower bone strains at the isthmus when inserting a long cementless revision stem with a slot and flute compared to a solid fully coated stem of identical geometry. Conclusion: The use of a distally slotted fluted porous coated femoral stem in revision hip arthroplasty results in a dramatically lower complication rate compared to rates previously reported for solid porous stems. These results strongly support the continued use of such a prosthesis for
Total hip arthroplasty continues to be one of the most effective procedures. Aseptic loosening compromises the long term outcome of this otherwise successful procedure. Large hemispherical cups may be used during revision surgery for patients with severe bone loss. Acetabular revision with cementless components has been remarkably successful with some series reporting no revisions for aseptic loosening at an average follow-up of 13.9 years. Another study on 186 patients (196 hips) receiving jumbo acetabular components, noted a survivorship of 98% at 4 years and 96% at 16 years. Cementless acetabular revision is now feasible for a wide range of revision situations, including some cases of pelvic discontinuity. The Paprosky classification is useful in predicting the reconstructive technique that will be required. Type I and many Type II defects may be reconstructed with standard cementless components. Many Type II and Type III defects, which involve the loss of additional structural bone, can be reconstructed with a jumbo cup. A jumbo cup is defined by Whaley et al. as a component that is >61 mm in women and >65 mm in men, a definition that is based on a shell that is >10 mm greater than the average diameter cup implanted in women and men. The jumbo cup has the advantage of an increased contact area between host bone and cup which maximises the surface area for ingrowth or ongrowth. The increased area of contact also prevents cup migration by allowing for force dissipation over a large area. Use of a jumbo cup may also decrease the need to use bone graft. In contrast to positioning the cup in the so-called high hip center, a jumbo cup can help to restore the hip center of rotation. The disadvantages of this technique are that host bone may have to be removed to implant the cup, that bone stock is not restored by the reconstruction, and that hemispherical cups have limited applicability in situations of oblong bone stock deficiency. Jumbo acetabular components can be used in combination with both structural and cancellous bone graft. In these cases, the cementless cup must achieve adequate contact with host bone in order to allow bone ingrowth to occur.
Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66 mm in men and 62 mm in women. In published studies this size cup is used in 14% – 39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80% – 96% at time frames from 15 – 20 years. The most common post-operative complication is dislocation.
Acetabular revision surgery can be complex and challenging. The technique selected depends upon the amount of bone deficiency. One of the most useful ways to assess remaining bone stock has been described by Paprosky, based on the location and severity of bone loss, and the likelihood of obtaining a stable construct with a hemispherical cup. In almost all cases of acetabular revision, the remaining bone is in fact capable of supporting a hemispherical socket, as long as details of technique are followed. The implant is larger than the native acetabulum and the removed socket by several sizes, and may approach quite large proportions, hence the term “Jumbo Cup”. The principle is to gradually enlarge the acetabulum with hemispherical reamers, taking care to protect the posterior and superior bone, at the expense of the less crucial anterior and inferior bone. As reaming proceeds, there comes a point where the reamer is stable within the acetabulum. High areas have been reamed down, and remaining cavitary defects are then back-filled with autogenous reamings or allograft cancellous chips. This is then re-reamed in reverse to distribute the graft into the defects. A large or “Jumbo” cup, 2–3 mm larger than the last reamer, is then impacted into place, and supplemented with screws. In many cases, the anterior lip, and to a lesser extent the medial wall, may be sacrificed to obtain stability, without compromising long-term results.
Traditionally the most commonly used femoral implants in revision hip arthroplasty are distally fixed monoblock designs. Ability to adjust length version and offset is limited once the stem is inserted. Revision using this type of stem has been associated with high incidence of complications including dislocation. Modular distally fixed femoral implants have been developed in order to decrease the complication rate by restoring normal hip mechanics. The goal of this study is to evaluate the performance of these type stems as it relates to fixation and instability. Seventy three revisions were done using three modular stem designs. All stems were common in design featuring a proximal cone shape body attached by a taper to a fluted distal stem. Revisions were performed for loosening, periprosthetic fractures and infections. Most revisions were in patients with severe bone loss. Follow-up range from 6 to 72 months with an average of 30 months. Parameters evaluated included fixation and instability. In this series we obtained excellent bony fixation as well as an acceptable dislocation rate in revision of severely compromised femurs. There were no stem fractures at the modular junction at early follow-up. Dislocation was readily managed by revision of the proximal portion of the stem without compromising distal fixation. This study demonstrates that modular approaches can be used successfully.
Introduction: The objectives of this study were to evaluate acetabular bone deficiency in
A trochanteric osteotomy offers extensile exposure of the hip on both the acetabular and femoral sides. The classical trochanteric osteotomy which is transverse and involved a release of the vastus lateralis muscles is complicated by a significant incidence of trochanteric nonunion and more importantly, trochanteric migration. The trochanteric slide was designed to avoid trochanteric migration by keeping the trochanteric fragment in continuity with the abductors and the vastus lateralis. Even if there was a trochanteric nonunion, a trochanteric migration was prevented by continuity of muscles enclosing the greater trochanter in a sling of muscle. When we first started doing the trochanteric slide, we used the technique originally described which involved starting with the posterior approach to take down the external rotators and the posterior capsule, and then proceeding with the trochanteric osteotomy. We found that our incidence of posterior dislocation increased to 15%. We therefore decided that we would attempt to do this operation but try to preserve the external rotators and the posterior capsule so they remained in situ attached to the main body of the femur, so that the trochanteric osteotomy was carried out just anterior to these muscles and posterior capsule. As a result of this our dislocation rate went from 15% to 3%. This exposure provides an extensile exposure of the pelvis and femur. If femoral component removal is anticipated to be difficult, then we use exactly the same approach but we extend the trochanteric fragment down as in an extended trochanteric osteotomy.
Dual mobility components in total hip arthroplasty have been successfully in use in Europe for greater than 25 years. However, these implants have only recently obtained FDA approval and acceptance among North American arthroplasty surgeons. Both decreased dislocation rate and decreased wear rates have been proposed benefits of dual mobility components. These components have been used for primary total hip arthroplasty in patients at high risk for dislocation, total hip arthroplasty in the setting of femoral neck fracture, revision for hip instability, and revision for large metal-on-metal (MoM) hip articulation. The literature for the North American experience is lacking. We report indications, short term outcomes, and complications of a series of subjects who received dual mobility outcomes at one institution.Background:
Purpose:
Dual mobility components for total hip arthroplasty provide for an additional articular surface, with the goals of improving range of motion, jump distance, and overall stability of the prosthetic hip joint. A large polyethylene head articulates with a polished metal acetabular component, and an additional smaller metal or ceramic head is snap-fit into the large polyethylene. New components have been released for use in North America over the past eight years and additional modular designs will be forthcoming. In some European centers, these components are routinely used for primary total hip arthroplasty. However, their greatest utility may be to prevent and manage recurrent dislocation in the setting of revision total hip arthroplasty. Several retrospective series have shown satisfactory results for this indication at medium-term follow-up times. The author has used dual mobility components on two occasions to salvage a failed constrained liner. However, at least one center reported failure of dual mobility if the abductor mechanism is absent. There are important concerns with dual mobility, including late polyethylene wear causing intra-prosthetic dislocation, and the lack of long-term follow-up data with most designs. Modular dual mobility components, with screw fixation, are the author's first choice for the treatment of recurrent dislocation in younger patients, revision of failed metal-metal resurfacing, total hips, large head unipolar arthroplasties, and salvage of failed constrained liners. There are more recent concerns of iliopsoas tendonitis, elevated metal levels with one design, and acute early intra-prosthetic dissociation following attempted closed reduction. However, in 2016, a dual mobility component, rather than a constrained liner, may be the preferred solution in revision surgery to prevent and manage recurrent dislocation.
In primary total hip replacements there are numerous options available for providing hip stability in difficult situations (i.e. Down's syndrome, Parkinson's disease). However, in the revision situation in general and in revision for recurrent dislocation specifically, it is important to have all options available including dual mobility constrained liners in order to optimise the potential for hip stability as well as function of the arthroplasty. Even with the newer options, available dislocation rates of higher than 5% have been reported in the first two years following revision surgery at institutions where high volumes of revision surgery are performed. Because of the deficient abductors, other soft tissue laxity and the requirement for large diameter cups, revision cases will always have more potential for dislocation. In these situations in the lower demand patient and where, a complex acetabular reconstruction that requires time for ingrowth before optimal implant bone stability to occur isn't present, dual mobility with constraint has provided excellent success in terms of preventing dislocation and maintaining implant construct fixation to bone at intermediate term follow-up. Hence in these situations dual mobility with constraint remains the option we utilise. We are also confident in using this device in cases with instability or laxity where there is a secure well-positioned acetabular shell. We cement a dual mobility constrained liner in these situations using the technique described below. Present indication for dual mobility constrained liners: low demand patient, large outer diameter cups, instability with well-fixed shells that are adequately positioned, abductor muscle deficiency or soft tissue laxity, multiple operations for instability Technique of cementing liner into shell: score acetabular shell if no holes, score liner in spider web configuration, all one or two millimeters of cement mantle Results: Constrained Dual Mobility Liner – For Dislocation: 56 Hips, 10 year average follow-up, 7% failure of device, 5% femoral loosening, 4% acetabular loosening. For Difficult Revisions: 101 hips, 10 year average follow-up, 6% failure of device, 4% femoral loosening, 4% acetabular loosening. Cementing Liner into Shell: 31 hips, 3.6 year average follow-up (2–10 years), 2 of 31 failures.