Advertisement for orthosearch.org.uk
Results 1 - 20 of 87
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 40 - 40
11 Apr 2023
Mahdi H Hardisty M Fullerton K Huang C Vachhani K Nam D Whyne C
Full Access

µCT images are commonly analysed to assess changes in bone density and architecture in preclinical murine models. Several platforms provide automated analysis of bone architecture parameters from volumetric regions of interest (ROI). However, segmentation of the regions of subchondral bone to create the volumetric ROIs remains a manual and time-consuming task. This study aimed to develop and evaluate automated pipelines for trabecular bone architecture analysis of mouse proximal tibia subchondral bone. A segmented dataset involving 62 knees (healthy and arthritic) from 10-week male C57BL/6 mice were used to train a U-Net type architecture, with µCT scans (downsampled) input that output segmentation and bone volume density (BV/TV) of the subchondral trabecular bone. Segmentations were upsampled and used in tandem with the original scans (10µ) as input for architecture analysis along with the thresholded trabecular bone. The analysis considered the manually and U-Net segmented ROIs using two available pipelines: the ITKBoneMorphometry library and CTan (SKYSCAN). The analyses included: bone volume (BV), total volume (TV), BV/TV, trabecular number (TbN), trabecular thickness (TbTh), trabecular separation (TbSp), and bone surface density (BSBV). There was good agreement for bone measures between the manual and U-Net pipelines utilizing ITK (R=0.88-0.98) and CTan (R=0.91-0.98). ITK and CTan showed good agreement for BV, TV, BV/TV, TbTh and BSBV (R=0.9-0.98). However, a limited agreement was seen between TbN (R=0.73) and TbSb (R=0.59) due to methodological differences in how spacing is evaluated. This U-Net/ITK pipeline seamlessly automated both segmentation and quantification of the proximal tibia subchondral bone. This automated pipeline allows the analysis of large volumes of data, and its open-source nature may enable the standardization of stereologic analysis of trabecular bone across different research groups


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 426 - 432
1 Mar 2005
Mueller CA Eingartner C Schreitmueller E Rupp S Goldhahn J Schuler F Weise K Pfister U Suedkamp NP

The treatment of fractures of the proximal tibia is complex and makes great demands on the implants used. Our study aimed to identify what levels of primary stability could be achieved with various forms of osteosynthesis in the treatment of diaphyseal fractures of the proximal tibia. Pairs of human tibiae were investigated. An unstable fracture was simulated by creating a defect at the metaphyseal-diaphyseal junction. Six implants were tested in a uniaxial testing device (Instron) using the quasi-static and displacement-controlled modes and the force-displacement curve was recorded. The movements of each fragment and of the implant were recorded video-optically (MacReflex, Qualysis). Axial deviations were evaluated at 300 N. The results show that the nailing systems tolerated the highest forces. The lowest axial deviations in varus and valgus were also found for the nailing systems; the highest axial deviations were recorded for the buttress plate and the less invasive stabilising system (LISS). In terms of rotational displacement the LISS was better than the buttress plate. In summary, it was found that higher loads were better tolerated by centrally placed load carriers than by eccentrically placed ones. In the case of the latter, it appears advantageous to use additive procedures for medial buttressing in the early phase


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract. Objectives. This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups. Methods. 7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density. Results. Axial modulus was 1.5 times greater than the two transverse directions (p<0.001), between which no difference was found. For all test directions, differences were quantified for density and modulus across all subchondral depths (p<0.001). 60% of transverse modulus variation was explained by density within subgroups for each subchondral depth. Medial axial modulus was 1.3 times greater than the lateral side (p = 0.011). Lateral axial modulus halved over a 25mm depth whilst remaining constant for the medial side. Density explained 75% of variation when grouped by subchondral depth and condyle. Yield strength was well predicted across all test directions, with density explaining 81% of axial strength variation and no differences over subchondral depth. Conclusions. The quantification of bone multiaxial modulus based on condyle and subchondral depth has been shown for the first time in a clinically viable protocol using conventional CT. Accounting for spatial variation improves upon literature property prediction models. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Full Access

Abstract. Approximately 20% of primary and revision Total Knee Arthroplasty (TKA) patients require multiple revisions, which are associated with poor survivorship, with worsening outcomes for subsequent revisions. For revision surgery, either endoprosthetic replacements or metaphyseal sleeves can be used for the repair, however, in cases of severe defects that are deemed “too severe” for reconstruction, endoprosthetic replacement of the affected area is recommended. However, endoprosthetic replacements have been associated with high complication rates (high incidence rates of prosthetic joint infection), while metaphyseal sleeves have a more acceptable complication profile and are therefore preferred. Despite this, no guidance exists as to the maximal limit of bone loss, which is acceptable for the use of metaphyseal sleeves to ensure sufficient axial and rotational stability. Therefore, this study assessed the effect of increasing bone loss on the primary stability of the metaphyseal sleeve in the proximal tibia to determine the maximal bone loss that retains axial and rotational stability comparable to a no defect control. Methods. to determine the pattern of bone loss and the average defect size that corresponds to the clinically defined defect sizes of small, medium and large defects, a series of pre-operative x-rays of patients with who underwent revision TKA were retrospectively analysed. Ten tibiae sawbones were used for the experiment. To prepare the bones, the joint surface was resected the typical resection depth required during a primary TKA (10mm). Each tibia was secured distally in a metal pot with perpendicular screws to ensure rotational and axial fixation to the testing machine. Based on X-ray findings, a fine guide wire was placed 5mm below the cut joint surface in the most medial region of the plateau. Core drills (15mm, 25mm and 35mm) corresponding to small, medium and large defects were passed over the guide wire allowing to act at the centre point, before the bone defect was created. The test was carried out on a control specimen with no defect, and subsequently on a Sawbone with a small, medium or large defect. Sleeves were inserted using the published operative technique, by trained individual using standard instruments supplied by the manufacturers. Standard axial pull-out (0 – 10mm) force and torque (0 – 30°) tests were carried out, recording the force (N) vs. displacement (mm) curves. Results. A circular defect pattern was identified across all defects, with the centre of the defect located 5mm below the medial tibial base plate, and as medial as possible. Unlike with large defects, small and medium sized defects reduced the pull-out force and torque at the bone-implant interface, however, these reductions were not statistically significant when compared to no bony defect. Conclusions. This experimental study demonstrated that up to 35mm radial defects may be an acceptable “critical limit” for bone loss below which metaphyseal sleeve use may still be appropriate. Further clinical assessment may help to confirm the findings of this experimental study. This study is the first in the literature to aim to quantify “critical bone loss” limit in the tibia for revision knee arthroplasty. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 12 - 12
1 Apr 2018
Trieb K Senck S
Full Access

Due to the increasing life expectancy the incidence of gonarthrosis, the degeneration of articular cartilage and bone in the knee joint, is increasing worldwide. Although the success rate of knee arthroplasties is high, complications like the loosening of the implant necessitate subsequent treatments. Moreover, the morphology and microstructure of the knee joint varies considerably between patients, therefore the anatomical expertise of orthopedic surgeons is essential. In this analysis we therefore investigate the variation and micro-architectural alterations in subchondral bone in osteoarthritis (OA) patients undergoing a knee replacement surgery.

We investigate OA bone degenerations using clinical X-rays and micro-computed tomography (micro-CT). Tibial bone samples are collected from 100 patients undergoing a total knee arthroplasty at the Klinikum Wels-Grieskirchen. Images are obtained using an industrial micro-CT scanner RayScan 250E. Microstructural parameters include bone volume fraction and cortical thickness of the subcondral bone and are obtained from micro-CT images with isometric voxel sizes of 50 µm.

Using micro-CT, we show a high morphological variation in relation to cortical thickness, both within the respective condyle as well as between the medial and lateral condyle. Cortical thickness seems to correlate with cartilage thickness and knee joint alignment. The results are incorporated into a gonarthrosis database that integrates microstructural parameters via a combined analysis of X-ray and micro-CT data. This database aims to facilitate the assessment of osteoarthritis, i.e. in relation to cartilage degeneration, in future patients on the basis of the investigated patient collective.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 286 - 286
1 Jul 2014
Lee J Jeong C
Full Access

Summary Statement

The implantation of scaffold-free CTE from suspension culture into growth-plate defects resulted in a significant reduction in growth arrest of the rabbit tibia

Introduction

In childhood and adolescence, the growth plate injury can cause partial premature arrest of growth plate, which can make problems such as leg length discrepancy and angular deformity. Bone bridge resection and variable implantation materials such as fat, bone wax, silastic and craniopalst has been investigated. However, those procedures may show limitations including the control of bone growth and long term safety of implant materials in vivo. As an alternative, homogeneous or heterogeneous cartilage cells and stem cell transplants have been tried. In this method, scaffold for cell transplantation is needed. But, so far the most suitable scaffold has not been established. Recently, some authors generated a cartilage tissue equivalent (CTE) using a suspension culture with biophysical properties similar to native hyaline cartilage. Therefore we are able to transplant the CTE without scaffold to the physeal defect. The purpose of this study was to investigated the effects of a transplantation of a vitro-generated scaffold-free tissue-engineered cartilage tissue equivalent (CTE) using a suspension chondrocyte culture in a rabbit growth arrest model.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 22 - 22
1 Mar 2021
Makelov B Silva J Apivatthakakul T Gueorguiev B Varga P
Full Access

Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate elevations were modelled and virtually tested biomechanically: IC-1 with 2-mm elevation (internal locked plate fixation), IC-2 with 22-mm elevation (externalized locked plate fixation with thin soft tissue simulation) and IC-3 with 32-mm elevation (externalized locked plate fixation with thick soft tissue simulation). Axial loads of 25 kg (partial weightbearing) and 80 kg (full weightbearing) were applied to the proximal tibia end and distributed at a ratio of 80%/20% on the medial/lateral condyles. A hinge joint was simulated at the distal end of the tibia. Parameters of interest were construct stiffness, as well as interfragmentary motion and longitudinal strain at the most lateral aspect of the fracture. Construct stiffness was 655 N/mm (IC-1), 197 N/mm (IC-2) and 128 N/mm (IC-3). Interfragmentary motions under partial weightbearing were 0.31 mm (IC-1), 1.09 mm (IC-2) and 1.74 mm (IC-3), whereas under full weightbearing they were 0.97 mm (IC-1), 3.50 mm (IC-2) and 5.56 mm (IC-3). The corresponding longitudinal strains at the fracture site under partial weightbearing were 1.55% (IC-1), 5.45% (IC-2) and 8.70% (IC-3). From virtual biomechanics point of view, externalized locked plating of unstable proximal tibia fractures with simulated thin and thick soft tissue environment seems to ensure favorable conditions for callus formation with longitudinal strains at the fracture site not exceeding 10%, thus providing appropriate relative stability for secondary bone healing under partial weightbearing during the early postoperative phase


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 40 - 40
1 Dec 2021
Cheong VS Roberts B Kadirkamanathan V Dall'Ara E
Full Access

Abstract. Objectives. Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX) mouse tibia has not been studied yet. Therefore, this study combines micro- computed tomography (micro-CT) imaging and computational modelling to evaluate the efficacies of treatments in reducing bone loss. Methodology. In vivo micro-CT (10.4µm/voxel) images of the right tibiae of N=18 female OVX C57BL/6 mice were acquired at weeks 14, 16, 18, 20 and 22 of age for 3 groups: mechanical loading (ML), parathyroid hormone (PTH) or combined therapies (PTHML). All mice received either injection of PTH (100μg/kg/day, 5days/week) or vehicle from week 18. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week. Bone adaptation was quantified through spatial changes in bone mineral density (BMD) and strain distribution was obtained from micro-CT-based finite element models. Results. Densitometric parameters improved for all treatment between week 18–20 (10–21%), with the strongest benefits due to loading in the proximal regions (16–35%). At week 22, PTHML treatment induced 23–76% higher bone apposition in the proximal tibia than either monotherapy. Compared to the OVX control, all treatments reduced periosteal resorption at weeks 18–20 and 20–22 (20–87%). However, resorption in weeks 20–22 were 29–55% higher than weeks 18–20, increasing the strain in the proximal tibia. Synergistic effects of PTH and ML were observed on the periosteal surface of proximal tibia, but additive effects were seen predominately on the distal and lateral tibia. Conclusions. ML had a more dominant effect in improving bone health. PTH enhances bone's osteogenic response to ML additively and synergistically in a site- and time-dependent manner


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 71 - 71
1 Nov 2021
Farinelli L Baldini M Faragalli A Carle F Gigante AP
Full Access

Introduction and Objective. The geometry of the proximal tibia and distal femur is intimately linked with the biomechanics of the knee and it is to be considered in total knee arthroplasty (TKA) component positioning. The aim of the present study was to evaluate the proximal tibial torsion in relation to the flexion-extension axis of the knee in healthy and pathological cohort affected by knee osteoarthritis (OA). Materials and Methods. We retrospectively analyzed computed tomography scans of OA knee of 59 patients prior to TKA and non-arthritic knee of 39 patients as control. Posterior condylar angle (PCA), femoral tibial torsion (TEAs-PTC and TEAs-PTT), proximal tibial torsion (PTC-PTT and PCAx-PTC) and distance between tibial tuberosity and the trochlear groove (TT-TG) were measured. Results. No differences were found for gender, age, TG-TT and PCAn angles. Statistically significant differences were found for all the other angles considered. Significant relation was found between Tibial Torsion and TEA-PTT angles, between PCAx-PTC and TEA-PTC, between TEA-PTT and TEA-PTC and between PCAx-PTC and TEA-PTT. All measures, except TG-TT and PCAn angles, showed high validity (AUC > 75%) in detecting OA, with TEA-PTT displaying the highest validity with an AUC of 94.38%. Conclusions. This is the first study to find significant differences in terms of proximal tibia geometry and anatomy between non arthritic and OA knees. It is conceivable that such anatomy could be implicated in the development of OA. Based on our data, the TEAs is a valid reference for correct positioning of tibial component in TKA. Indeed, setting the tibial component parallel to TEAs makes the prosthetic knee more similar to the native non-arthritic knee


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 119 - 119
2 Jan 2024
Arthur L Min X Tu S Campi S Mellon S Murray D
Full Access

Tibial periprosthetic fracture is an important complication of the Oxford Unicompartmental Knee Replacement (OUKR). Primary fixation of cementless OUKR tibial components relies on the interference-fit of the ‘keel’ and a slot in the proximal tibia. Clinically used double blade keel saws (DKS) create slots with two grooves, generating stress concentrations where fractures may initiate. This study aimed to investigate slot factors that may influence incidence of tibial periprosthetic fractures. Slots were made in PCF20 polyurethane foam using the DKS plus/minus adjuvant rasping, single blade keel saw (SKS), and rasp-only. Round and square slots were machined with milling cutters. Compact tensile tests were conducted per ASTM E399 to determine tensile load to fracture (TLTF) and results were validated using bovine tibia. Cementless OUKR components were implanted into slots in custom polyurethane blocks and compressed to failure to determine anatomical load to fracture (ALTF). A custom MATLAB program calculated slot roundness from cross-sectional images. Round slots had higher TLTF (29.5N, SD=2.7) than square (25.2N, SD=1.7, p<0.05) and DKS slots (23.3N, SD=2.7, p<0.0001). Fractures occurred at the round slot apices, square slot corners, and deepest DKS slot grooves. ALTF was not significantly different between square and round slots. Adjuvant rasping made DKS slots significantly rounder, resulting in significantly higher TLTF, but rasping did not increase ALTF. ALTF was significantly higher for SKS (850N, SD=133, p<0.01) and rasp-only (912N, SD=100, p<0.001) slots compared to standard DKS slots (703N, SD=81). Round keel slots minimise stress concentrations and increase TLTF but do not increase ALTF. The SKS and rasp-only slots retain material at slot ends and have significantly higher ALTF. Future studies should assess saw blades that retain material and round slot ends to evaluate if their use may significantly reduce the incidence of tibial periprosthetic fracture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 80 - 80
1 Mar 2021
Arafa M
Full Access

Abstract. Objective. To compare the clinical and radiological outcome between less invasive stabilization system (LISS, Synthes, Paoli, PA.) and open reduction with internal fixation (ORIF) for the treatment of extraarticular proximal tibia fractures through the lateral approach. Background. Proximal tibial fractures present a difficult treatment challenge with historically high complication rates. ORIF has been in vogue for long time with good outcome. But these are associated with problems especially overlying skin conditions, delayed recovery and rehabilitation with limited functional outcome. LISS is an emerging procedure for the treatment of proximal tibial fractures. It preserves soft tissue and the periosteal circulation, which promotes fracture healing. Patients and methods. Thirty patients with closed proximal tibial fractures were included in this study. They were randomly divided into 2 groups. Group I (n=15) patients were treated by LISS and group II (n=15) by ORIF. Major characteristics of the two groups were similar in terms of age, sex, mode of injury, fracture location, and associated injuries. All patients were followed up at least 6 months. Results. In each group, 12 patients were united, 2 patients were non- united and one patient showed delayed union. The mean operative time in LISS patients was 79.3 min, while in ORIF patients; it was 122 min. All patients of LISS group were exposed to radiation, while only 40% of ORIF group were exposed. The mean time of union of LISS patients was 10.87weeks. While in ORIF patients, the mean time of union was 21.13 weeks. There was no significant difference between both groups regarding the postoperative complications. Functional outcome was satisfactory in both groups. Conclusion. LISS achieves comparable results with ORIF in extraarticular fractures of the proximal tibia. Although LISS potentially has the radiation hazard, it reduces the perioperative complications with a shortened operation time and minimal soft tissue dissection. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 34 - 34
1 Mar 2021
Cheong VS Roberts B Kadirkamanathan V Dall’Ara E
Full Access

Abstract. Objectives. Prediction of bone adaptation in response to mechanical loading is useful in the clinical management of osteoporosis. However, few studies have investigated the effect of repeated mechanical loading in the mouse tibia. Therefore, this study uses a combined experimental and computational approach to evaluate the effect of mechanical loading on bone adaptation in a mouse model of osteoporosis. Methods. Six female C57BL/6 mice were ovariectomised (OVX) at week 14 and scanned using in vivo micro computed tomography (10.4µm/voxel) at week 14, 16, 18, 20 and 22. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day, 3 days/week. Linear isotropic homogeneous finite element (microFE) models were created from the tissue mineral density calibrated microCT images. Changes in bone adaptation, densitometric and spatial analyses were measured by comparing the longitudinal images after image registration. Results. Mechanical loading increased periosteal apposition between weeks 18–20, which reduced slightly between weeks 20–22. Periosteal resorption reduced between weeks 18–20. At weeks 20–22, it remained lower than before treatment, but was up to 70% higher than after the first week of loading. Average SED increased due to OVX before decreasing due to mechanical loading. The highest increase in SED was at the proximal tibia between weeks 14 to 16 (102%), whereas the highest reduction (40%) occurred after the second week of loading in the proximal tibia. Conclusions. The decrease/increase in bone apposition/resorption between weeks 20–22, despite the similar strain distributions between weeks 18–20 and 20–22, suggests that the first application of mechanical loading had a greater effect on reversing the adverse effects of the disease than the second. This imply that a systematic increase in peak load or loading rate may be required to achieve a similar bone adaptation rate with time. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 30 - 30
17 Nov 2023
Swain L Holt C Williams D
Full Access

Abstract. Objectives. Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method. Methods. Written informed consent was given by one participant who had four tantalum beads implanted into their distal femur and proximal tibia from a previous study. Three-dimensional (3D) models of the femur and tibia were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). Anatomical Coordinate Systems (ACS) were applied to the bone models using automated algorithms. 1. The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (60 FPS, 1.25 ms pulse width) was recorded whilst the participant performed a lunge. The beads were tracked, and the ACS position of the femur and tibia were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones. Using the principles defined by Grood and Suntay. 2. , 6 DOF kinematics of the tibiofemoral joint were calculated (MATLAB, MathWorks). The mean difference and STD between these two sets of kinematics were calculated. Results. The absolute mean femur and tibia ACS position differences (Table 1) between the bead and image-registered poses were found to be within 0.75mm for XYZ, with all STD within ±0.5mm. Mean rotation differences for both bones were found to be within 0.2º for XYZ (Table 1). The absolute mean tibiofemoral joint translations (Table 1) were found to be within ±0.7mm for all DOF, with the smallest absolute mean in compression-distraction. The absolute mean tibiofemoral rotations were found to be within 0.25º for all DOF (Table 1), with the smallest mean was found in abduction-adduction. The largest mean and STD were found in internal-external rotation due to the angle of the X-rays relative to the joint movement, increasing the difficulty of manual image registration in that plane. Conclusion. The combined MRI-BVX method produced bone pose and tibiofemoral kinematics accuracy similar to previous CT results. 3. This allows for confidence in future results, especially in clinical applications where high accuracy is needed to understand the effects of disease and the efficacy of surgical interventions. Acknowledgements: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) doctoral training grant (EP/T517951/1). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives. We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection. Materials and Methods. Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn. Results. Loading alone caused a rise in subchondral IOP from 11.7 mmHg (. sd. 7.1) to 17.9 mmHg (. sd. 8.1; p < 0.0002). During arterial occlusion, IOP fell to 5.3 mmHg (. sd. 4.1), then with loading there was a small rise to 7.6 mmHg (. sd. 4.5; p < 0.002). During venous occlusion, IOP rose to 20.2 mmHg (. sd. 5.8), and with loading there was a further rise to 26.3 mmHg (. sd. 6.3; p < 0.003). The effects were present at three different sites along the limb simultaneously. Saline injections showed pressure transmitted throughout the length of the femur but not across the knee joint. Conclusion. This is the first study to report changes in IOP in vivo during loading and with combinations of vascular occlusion and loading. Intraosseous pressure is not a constant. It is reduced during proximal arterial occlusion and increased with proximal venous occlusion. Whatever the perfusion state, in vivo load is transferred partly by hydraulic pressure. We propose that joints act as hydraulic pressure barriers. An understanding of subchondral physiology may be important in understanding osteoarthritis and other bone diseases. Cite this article: M. Beverly, S. Mellon, J. A. Kennedy, D. W. Murray. Intraosseous pressure during loading and with vascular occlusion in an animal model. Bone Joint Res 2018;7:511–516. DOI: 10.1302/2046-3758.78.BJR-2017-0343.R2


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 57 - 57
1 Dec 2020
Ateş YB Çullu E Çobanoğlu M
Full Access

Aim. To investigate the effect of the eight plate position in sagittal plane on tibial slope in temporary epiphysiodesis technique applied to the proximal tibia and whether there is a rebound effect after removing the plate. Method. Forty New Zealand rabbits (6 weeks old) were divided into four groups. In all groups, two 1.3 mm mini plates and cortical screws implantation were placed on both medial and lateral side of the proximal epiphysis of the right tibia. In Group 1 and 3, the plates were placed on anterior of the proximal tibial anatomical axis in the sagittal plane, and placed posteriorly in Group 2 and 4. The left tibia was examined as control in all groups. Group 1 and Group 2 were sacrificed after four week-follow-up. In Group 3 and Group 4, the implants were removed four weeks after index surgery and the rabbits were followed four more weeks to investigate the rebound effect. The tibial slope was measured on lateral X-rays every two weeks. Both medial and lateral plateau slopes were evaluated on photos of the dissected tibia. Results. In Group 1, right MTPA (medial tibial plateau angle) and left MTPA, right LTPA (lateral tibial plateau angle) and left LTPA, and right 4wTPPA (the tibial proximal posterior angle at 4th week) and left 4wTPPA values were compared with each other. There was a significant difference in MTPA, LTPA, and 4wTPPA in Group 1 (p: 0.003, 0.006, 0.004). In Group 1, the medial and lateral slope significantly decreased after 4 weeks. There was no significant difference in MTPA, LTP and 4wTPPA measurements in Group 2 (p= 0.719, 0.306, 0.446, respectively). In Group 2, the slope did not change in four weeks. There was a significant difference in MTPA, LTPA, 4wTPPA, and 8wTPPA (tibial proximal posterior angle at 8th week) in Group 3 (p= 0.005, 0.002, <0.001, <0.001, respectively). In Group 3, the slope decreased at 4th week and remained stabile during the next four week-follow up and no rebound effect was observed. There was no significant difference in MTPA, LTPA, 4wTPPA, and 8wTPPA measurements in Group 4 (p= 0.791, 0.116, 0.232, 0.924), respectively. In group 4, slope did not change at 4th week of index surgery and no rebound effect was observed in the next four week-follow up. Conclusion. If eight plates were placed on anterior of lateral proximal tibia axis on both medial and lateral side, the tibial slope would reduce, and remain stabile after implant removal. Care should be taken to place the plates on the line of proximal tibial axis in sagittal plane in temporary epiphysiodesis technique performed due to angular knee deformities. Changing the slope due to plate placement can be used as a secondary gain for patients who will benefit from slope change, such as adolescent ACL surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 75 - 75
1 Dec 2021
Stoddart J Garner A Tuncer M Cobb J van Arkel R
Full Access

Abstract. Objectives. There is renewed interest in bi-unicondylar arthroplasty (Bi-UKA) for patients with medial and lateral tibiofemoral osteoarthritis, but a spared patellofemoral compartment and functional cruciate ligaments. The bone island between the two tibial components may be at risk of tibial eminence avulsion fracture, compromising function. This finite element analysis compared intraoperative tibial strains for Bi-UKA to isolated medial unicompartmental arthroplasty (UKA-M) to assess the risk of avulsion. Methods. A validated model of a large, high bone-quality tibia was prepared for both UKA-M and Bi-UKA. Load totalling 450N was distributed between the two ACL bundles, implant components and collateral ligaments based on experimental and intraoperative measurements with the knee extended and appropriately sized bearings used. 95th percentile maximum principal elastic strain was predicted in the proximal tibia. The effect of overcuts/positioning for the medial implant were studied; the magnitude of these variations was double the standard deviation associated with conventional technique. Results. For all simulations, strains were an order of magnitude lower than that associated with bone fracture. Highest strain occurred in the spine, under the anteromedial ACL attachment, adjacent to transverse overcut of the medial component. Consequently, Bi-UKA had little effect on strain: <10% increases were predicted when compared to UKA-M with equivalent medial cuts/positioning. However, surgical overcutting/positional variation that resulted in loss of anteromedial bone in the spine increased strain. The biggest increase was for lateral translation of the medial component: 44% and 42% for UKA-M and Bi-UKA, respectively. Conclusions. For a large tibia with high bone quality, Bi-UKA with a well-positioned lateral implant had no tangible effect on the risk of tibial eminence avulsion fracture compared to UKA-M. Malpositioning of the medial component that removes bone from the anterior spine could prove problematic for smaller tibiae. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 16 - 16
1 Dec 2021
Munford M Stoddart J Liddle A Cobb J Jeffers J
Full Access

Abstract. Objectives. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model. Methods. In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment seen in the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2–3.3MPa compared to 1.3–2.7MPa for the native tibia. The conventional UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and 9.7 respectively. The conventional UKA and TKA implants caused 71% and 77% of bone surface area to be underloaded compared to the native tibia. Conclusions. Titanium lattice implants can maintain the natural mechanical loading in the proximal tibia after UKA and TKA. This may help maintain normal bone homeostasis throughout the life of the implant. These encouraging data indicate normal bone homeostasis can be maintained after arthroplasty using manufacturing methods already in widespread use. This would maintain bone quality throughout the life of the implant and alleviate complications at revision surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. Materials and Methods. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids. Results. Pre-operative clinical and radiological scoring confirmed MKO and associated abnormal varism. The morphological characterization of GRF was successfully achieved pre- and post- HTO on patient-specific tibial plateau. Pre-operative GFR patterns and peaks, including those related to knee joint moments, were observed medially on the knee, as expected. In post-HTO, these resulted lateralized and much closer to the tibial plateau spine, as desired. In detail, when post- is compared to pre-op, the difference of the centroids were, on average, 54.6±18.1 mm (min÷max: 36.7÷72.8 mm) more lateral during walking and 52.5±28.5 mm (24.7÷87.6 mm) during stair climbing. When reported in % of the tibial plateau width, these values became 69.2±20.1 (46.1÷81.4) and 78.1±30.1 (43.4÷98.0), respectively. Post-op also clinical scores and GA revealed a considerable overall improvement, especially in functional performances. Conclusions. The reported novel approach allows a combination of motion data, including GFR, and tibial-plateau morphology. Relevant pre- and post-operative routine application offer a quantification of the effect of the original deformity and executed joint realignment, and an assistance for surgical planning in case of HTO as well as ideally in other orthopedic treatments


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 100 - 100
1 Mar 2021
Raina D Liu Y Isaksson H Tägil M Lidgren L
Full Access

Targeted delivery of drugs is a major challenge in diseases such as infections and tumors. The aim of this study was to demonstrate that hydroxyapatite (HA) particles can act as a recruiting moiety for various bioactive molecules and as a proof-of-concept demonstrate that the affinity of drugs to hydroxyapatite can exert a biological effect. A bisphosphonate, zoledronic acid (ZA), was used as a model drug. Experiment 1 (ZA seeks HA): Calcium sulphate (CaS)/hydroxyapatite (HA) biomaterial pellets (diameter¸=5 mm, height=2 mm) were implanted in the abdominal muscle pouch of rats. After 2-weeks of implantation, a sub-cutaneous injection of 14C-ZA (0.1 mg/kg) was given. 24 h later, the animals were sacrificed and the uptake of ZA determined in the pellets using scintillation counting. Experiment 2 (Systemically administered ZA seeks HA and exerts a biological effect): A fenestrated implant was filled with the CaS/HA biomaterial and inserted in the proximal tibia of rats. 2-weeks post-op, a subcutaneous injection of ZA (0.1 mg/kg) was given. Animals were sacrificed at 6-weeks post-op. Empty implant was used as a control. Peri-implant bone formation was evaluated using different techniques such as micro-CT, mechanical testing and histology. Welch's t-test was used for mechanical testing and Mann-Whitney U test for micro-CT data analysis. Experiment 1: Uptake of radioactive ZA in the CaS/HA biomaterial was confirmed. Almost no ZA was present in the surrounding muscle. These results show high specific binding between systemically administered ZA and synthetic particulate HA. Experiment 2: Significantly higher peri-implant bone was measured using micro-CT in the group wherein the implant contained the CaS/HA biomaterial and ZA was administered systemically (This study presents a method for biomodulating HA in situ by different bioactive molecules. The approach of implanting a biomaterial capable of recruiting systemically given drugs and thereby activate the material is novel and may present a possibility to treat bone infections or tumors


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 58 - 58
1 Mar 2021
Kinghorn A Bowd J Whatling G Wilson C Mason D Holt C
Full Access

Abstract. OBJECTIVES. Valgus high tibial osteotomy (HTO) represents an effective treatment for patients with medial compartment osteoarthritis (OA) in a varus knee. However, the mechanisms which cause this clinical improvement are unclear. Previous studies suggest a wider stance gait can reduce medial compartment loading via reduction in the external knee adduction moment (KAM); a measure implicated in progression of medial compartment OA. This study aimed to measure whether valgus HTO is associated with a postoperative increase in static stance width. METHODS. 32 patients, recruited in the Biomechanics and Bioengineering Centre Versus Arthritis HTO study, underwent valgus (medial opening wedge) HTO. Weightbearing pre- and post- operative radiographs were taken showing both lower limbs. The horizontal distance, measured from a fixed point on the right talus to the corresponding point on the left, was divided by the talus width to give a standardised “stance width” for each radiograph. The difference between pre- and post- operative stance width was compared for each patient using a paired sample t-test. RESULTS. Preoperatively, mean stance was 4.00 talar-widths but postoperatively this increased to 5.41. This mean increase of 1.42 talar-widths was statistically significant (p=0.001) and represents a mean proportional increase in stance width of 35.5% following HTO. Of the 32 patients, 23 showed increased stance width and 9 decreased (range −4.64 to 6.00 talar-widths). CONCLUSIONS. These findings indicate an association of frontal plane surgical realignment at the proximal tibia via a medial opening wedge HTO with an increased stance width on postoperative radiographs. Considering both wider stance gait and HTO have been shown to affect the progression of medial compartment OA, these results may explain one mechanism contributing to the efficacy of HTO surgery. However, the range of changes in stance width suggests significant variability in how patients adapt at a whole-limb and whole-body level following HTO. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project