Aims. It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. Methods. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful
Aims. It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. Methods. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful
Uncemented press-fit cups provide bone fixation in primary total hip replacement (THR). However, sometimes screws are needed to achieve primary stability of the socket. We analyzed biomechanical factors related to press-fit in seven cup designs and assessed whether screw use provides similar loosening rates to those of the press-fit technique. From a series of 1,350 primary uncemented THRs using seven different press-fit cup designs (a dome loading hemispheric cup and bi- or tri- radius cups), we only analyzed the 889 diagnosed of primary osteoarthritis. All cases were operated by the same surgical team. The use of screws was decided intraoperatively based on cup stability according to the pull-out test. There were 399 female and 490 male patients with a mean age of 65 years old. The mean follow-up was 8.6 years (5–13 years). The reconstruction of the hip rotation center was evaluated according to Ranawat.Introduction
Materials y Methods
It is generally accepted that strong hammering is necessary for the press fit fixation of a joint prosthesis. In this regard, large stress must remain within bone tissues for a long period. This residual stress is, however, some different from the feasible mechanical stimuli for bone tissues because that is stationary, continuous and directed from within outward unlike physiological conditions. The response on this residual stress, which may induce the disorder of the fixation of implant, has not been discussed, yet. In the present study, we designed an experimental method to exert a stationary load from inside of a femur of a rat by inserting a loop spring made from a super elastic wire of titanium alloy. Response of the femur was assessed by bone morphology mainly about the migration of the wire into the bone twelve weeks after the implantation. We developed a method using a loop spring made of super elastic wire of titanium alloy, which can maintain sufficient magnitude of stress in a rat femur during the experimental period. The loop spring was fabricated with a wire of 0.4 mm diameter before the quenching process. Eleven Wistar rats of ten weeks old were used for the experiments. The loop spring was inserted the right femur, as shown in Figure 1. The left femur was remained intact. The compressive load was added from within outward of bone marrow when the spring was compressed with the insertion into a bone marrow of a rat femur, as shown in Figure 2. The average contact stress was calculated by dividing the elastic force by the spring and bone contact area. The contact stress was distributed from 62 to 94 MPa, which are sufficiently lower than the yield stress of cortical bone [1]. The assessment of bone morphology around the implanted loop spring was performed by micro-CT imaging after the twelve weeks of cage activity.INTRODUCTION
MATERIALS AND METHODS
Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total
THA in patients with acetabular bone defects is associated with a high risk of dislocation. Dual mobility (DM) cups are known to prevent and treat chronic instability. The aim of this study was to evaluate the dislocation rate and survival of jumbo DM cups. This was a retrospective, continuous, multicenter study of all the cases of jumbo DM cup implantation between 2010 and 2017 in patients with acetabular bone loss (Paprosky 2A: 46%, 2B: 32%, 2C: 15% and 3A: 6%). The indications for implantation were revisions for aseptic loosening of the cup (n=45), aseptic loosening of the femoral stem (n=3), bipolar loosening (n=11), septic loosening (n=10), periprosthetic fracture (n=5), chronic dislocation (n=4), intraprosthetic dislocation (n=2), cup impingement (n=1), primary posttraumatic arthroplasty (n=8), and acetabular dysplasia (n=4). The jumbo cups used were COPTOS TH (SERF), which combines
Aims. The aim of this study was to evaluate the differences in revision and complication rates, functional outcomes, and radiological outcomes between cemented and press-fit humeral stems in primary anatomical total shoulder arthroplasty (TSA). Materials and Methods. A comprehensive systematic review and meta-analysis was conducted searching for studies that included patients who underwent primary anatomical TSA for primary osteoarthritis or rheumatoid arthritis. Results. There was a total of 36 studies with 927 cemented humeral stems and 1555 press-fit stems. The revision rate was 5.4% (95% confidence interval (CI) 3.9 to 7.4) at a mean of 89 months for cemented stems, and 2.4% (95% CI 1.1 to 4.7) at a mean of 40 months for press-fit stems. A priori subgroup analysis to control for follow-up periods demonstrated similar revision rates: 2.3% (95% CI 1.1 to 4.7) for cemented stems versus 1.8% (95% CI 1.4 to 2.9) for press-fit stems. Exploratory meta-regression found that longer follow-up was a moderating variable for revision (p = 0.003). Conclusion. Cement fixation had similar revision rates when compared to press-fit stems at short- to midterm follow-up. Rotator cuff pathology was a prevalent complication in both groups but is likely not related to fixation type. Overall, with comparable revision rates, possible easier revision, and decreased operative time, humeral
Aims. There are concerns regarding initial stability and early periprosthetic fractures in cementless hip arthroplasty using short stems. This study aimed to investigate stress on the cortical bone around the stem and micromotions between the stem and cortical bone according to femoral stem length and positioning. Methods. In total, 12 femoral finite element models (FEMs) were constructed and tested in walking and stair-climbing. Femoral stems of three different lengths and two different positions were simulated, assuming
Aims. Cementless acetabular components rely on
During revision total knee arthroplasty (rTKA), proximal tibial bone loss is frequently encountered and can result in a less-stable bone-implant fixation. A 3D printed titanium alloy (Ti6Al4V) revision augment that conforms to the irregular shape of the proximal tibia was recently developed. The purpose of this study was to evaluate the fixation stability of rTKA with this augment in comparison to conventional cemented rTKA. Eleven pairs of thawed fresh-frozen cadaveric tibias (22 tibias) were potted in custom fixtures. Primary total knee arthroplasty (pTKA) surgery was performed on all tibias. Fixation stability testing was conducted using a three-stage eccentric loading protocol. Static eccentric (70% medial/ 30% lateral) loading of 2100 N was applied to the implants before and after subjecting them to 5×103 loading cycles of 700 N at 2 Hz using a joint motion simulator. Bone-implant micromotion was measured using a high-resolution optical system. The pTKA were removed. The proximal tibial bone defect was measured. One tibia from each pair was randomly allocated to the experimental group, and rTKA was performed with a titanium augment printed using selective laser melting. The contralateral side was assigned to the control group (revision with fully cemented stems). The three-stage eccentric loading protocol was used to test the revision TKAs. Independent t-tests were used to compare the micromotion between the two groups. After revision TKA, the mean micromotion was 23.1μm ± 26.2μm in the control group and 12.9μm ± 22.2μm in the experimental group. There was significantly less micromotion in the experimental group (p= 0.04). Prior to revision surgery, the control and experimental group had no significant difference in primary TKA micromotion (p= 0.19) and tibial bone loss (p= 0.37). This study suggests that early fixation stability of revision TKA with the novel 3D printed titanium augment is significantly better then the conventional fully cemented rTKA. The early
Aims. Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or
Background. Cementless acetabular cups rely on
Durable humeral component fixation in shoulder arthroplasty is necessary to prevent painful aseptic loosening and resultant humeral bone loss. Causes of humeral component loosening include stem design and material, stem length and geometry, ingrowth vs. ongrowth surfaces, quality of bone available for fixation, glenoid polyethylene debris osteolysis, exclusion of articular particulate debris, joint stability, rotator cuff function, and patient activity levels. Fixation of the humeral component may be achieved by cement fixation either partial or complete and
Osteochondral (OC) grafting is one available method currently used to repair full thickness cartilage lesions with good results clinically when grafting occurs in patients with specific positive prognostic factors. However, there is poor understanding of the effect of individual patient and surgical factors. With limited tissue availability, development of Finite Element (FE) models taking into account these variations is essential. The aim of this study was to evaluate the effect of altering the material properties of OC grafts and their host environment through computer simulation. A generic FE model (ABAQUS CAE 2017) of a push-out test was developed as a press-fit bone cylinder (graft) sliding inside a bone ring (host tissue).
Advances in military surgery have led to significant numbers of soldiers surviving with bilateral above knee amputations. Despite advances in prosthetic design and high quality rehabilitation not all amputees succesfully ambulate. Five patients (10 stumps) with persisting socket fit issues were selected for osseointegration (OI) using a transcutaneous prosthesis with
INTRODUCTION. The cup component of modern resurfacing systems are often coated creating a cementless
Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m2 (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples Aims
Methods
Periprosthetic fractures present several unique challenges including gaining fixation around implants, poor bone quality and deciding on an appropriate treatment strategy. Early. With the popularity of cementless stems in primary total hip arthroplasty (THA) we have seen a concomitant rise in the prevalence of intra-operative and early post-operative fractures of the femur. While initial