It has been suggested that matrix metalloproteinase-3 (MMP-3, stromelysin-1) has an important role in the degeneration of intervertebral discs (IVDs). A human MMP-3 promoter 5A/6A
Low bone mass and osteopenia have been described in the axial and peripheral skeleton of patients with adolescent idiopathic scoliosis (AIS). Recently, many studies have shown that gene
Aims. The aim of this study was to determine the diagnostic utility of histological analysis in spinal biopsies for spondylodiscitis (SD). Patients and Methods. Clinical features, radiology, results of microbiology, histology, and laboratory investigations in 50 suspected SD patients were evaluated. In 29 patients, the final (i.e. treatment-based) diagnosis was pyogenic SD; in seven patients, the final diagnosis was mycobacterial SD. In pyogenic SD, the neutrophil
Two collagen type IX gene
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
The aims of this study were to determine the diagnostic yield of image-guided biopsy in providing a final diagnosis in patients with suspected infectious spondylodiscitis, to report the diagnostic accuracy of various microbiological tests and histological examinations in these patients, and to report the epidemiology of infectious spondylodiscitis from a country where tuberculosis (TB) is endemic, including the incidence of drug-resistant TB. A total of 284 patients with clinically and radiologically suspected infectious spondylodiscitis were prospectively recruited into the study. Image-guided biopsy of the vertebral lesion was performed and specimens were sent for various microbiological tests and histological examinations. The final diagnosis was determined using a composite reference standard based on clinical, radiological, serological, microbiological, and histological findings. The overall diagnostic yield of the biopsy, and that for each test, was calculated in light of the final diagnosis.Aims
Methods
Introduction. The cause of adolescent idiopathic scoliosis (AIS) is still not known. Although several candidate gene studies and linkage analyses have been done, no causal relationship has yet been established. To our knowledge, we report the first case-control based genome-wide association study (GWAS) for this trait. Methods. The study was undertaken in a set of 196 cases with a specific AIS phenotype (based on Lenke's classification) in southern China, and in 401 controls without radiological evidence of scoliosis. Results. Two single-nucleotide
Introduction. Several disorders have been associated with genetic variants. Copy number variations (CNVs) are documented micro DNA insertions and deletions that may be ten times more frequent than point mutations. We undertook a genome-wide scan to find CNVs associated with adolescent idiopathic scoliosis (AIS). Methods. 879 white individuals with AIS severe spine curvatures and 1486 white controls were evaluated for CNVs with the Affymetrix 6.0 HUSNP array. After implementation of quality filters, data were quantile normalised. Copy number analysis was done with Helix Tree (Golden Helix, Bozeman, MT, USA). The copy number segments were measured with the Golden Helix's univariate segmentation algorithm. Statistically different segments were extracted with mean Log2 ratio intensity for that segment to highlight deletions, neutrals, and duplications. We then undertook association analysis on those segments. A p value of less than 10–7 was regarded as significant. Results. We recorded 143 significant segments or regions associated with AIS. 94 of these regions showed gains of copy whereas 49 had deletions. 63 of these significant regions map to known genes. Biological functions of the proteins coded by the genes identified complex groups associated with embryonic development, nervous system development and function, and bone and soft tissue development. These groups present an extensive overlap with the biological function groups that were generated with associated single-nucleotide
Introduction. Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal deformity, affecting about 3% of school-aged children worldwide. This disorder occurs in otherwise healthy children who bear no obvious deficiencies in the components of the spinal column itself. The cause of AIS is poorly understood, as is implied by the name. Lesions of the bony composition of the vertebrae, the vertebral endplates, the paraspinous muscles, or the neurological system each have been proposed to explain disease pathogenesis. Progress has been hampered by the absence of an obvious AIS animal model. Consequently we have used genetic studies in human populations to identify factors underlying AIS susceptibility. The complex inheritance and population frequency of AIS suggest that many genetic factors are involved in this disease. To search comprehensively for such factors we previously undertook the first genome-wide association study (GWAS) of AIS susceptibility in a cohort of 419 families in Texas, USA. We found that chromosome 3 SNPs in the proximity of the CHL1 gene yielded strongest results, which we replicated in additional cohorts (rs10510181 OR 1·49, 95% CI 1·29–173, p=2·58×10–8). CHL1 is of interest because it encodes an axon guidance protein and is functionally related to the ROBO3 gene that causes hereditary gaze palsy with progressive scoliosis (HGPPS), a rare disease marked by severe scoliosis. Here we expanded the study to 702 Texas families. Methods. We tested more than 327 000 single-nucleotide
Introduction. Clinical studies have shown distinct differences in later-onset idiopathic scoliosis (IS) between men and women, including curve severity, stiffness, and ease of operative intervention. Therefore, significant scoliosis in men was used as criteria to create a phenotypical subset of families with IS. The goal of this study is to identify genetic determinants that relate specifically to men with a scoliotic curvature of 30° or more. Methods. We identified 25 families (208 individuals) in which a male was diagnosed with 30° or more IS curvature in adolescence. 123 individuals were affected (48 male; 75 female), and 85 were unaffected (45 male; 40 female). Initially, a genomic screen was done with a modified CHLC (version 9) marker set. After initial linkage analyses, the group underwent finemapping with a custom single-nucleotide
Introduction. Kyphoscoliosis is defined by a structural lateral curvature of the spine of 10° or more and an excessive thoracic kyphotic curve of 40° or more. Genetic analyses of families in which two or more members had kyphoscoliosis identified a 3·5 Mb area on chromosome 5p containing three genes of the Iroquois (IRX) homeobox family, IRX1, IRX2, and IRX4, which were then sequenced. Methods. Exons and highly conserved non-coding regions (HNCRs) 500 kb upstream and downstream fromIRX1, IRX2, and IRX4 were sequenced in 46 individuals from six families. Selection of these elements was based on PhastCons Placental Mammal Conserved Elements, Multiz Alignment. Single-nucleotide
Introduction. Idiopathic scoliosis (IS) has been associated with several genetic loci in varying study populations, reflecting the disorder's genetic complexity. One region of interest is on chromosome 17, flanking regions linked to neurofibromatosis type 1 (NF1). This region is of particular relevance because the most common osseous manifestation in NF1 is scoliosis (10–30% of patients). This alludes to a potential genetic correlation within this region affecting spinal development or stability. The objective of this research is to identify candidate genes within this region that are statistically linked to IS. Methods. An initial population of IS families recruited through approval by the institutional review board (202 families; 1198 individuals) had DNA harvested from blood, and underwent genomic screening, finemapping, and statistical analyses. We identified a specific familial subset: families with males having undergone surgery for scoliosis (17 families, 147 individuals). The initial genome-wide scan indicated that this subset was linked to chromosome 17q.11.2. The most prominent marker, D17s975, (p=0·0003) at 25.12 Mb is adjacent to the NF1 deletional region. We then analysed a custom panel of single-nucleotide
Introduction. Studies of the vestibular system in patients with idiopathic scoliosis (IS) have shown abnormalities in the semicircular canals (SCC) and the basicranium. Rousie (2008) revealed a statistically increased incidence of structural anomalies in the SCCs with three-dimensional computer generated modelling. Some of these findings were replicated in a small population by Cheng (2010). The primary goals of this investigation are verification of SCC abnormalities of patients with IS versus controls with use of three-dimensional modelling with subsequent development of a unique phenotypical classification. Our long-term goal is to provide new direction for hypothesis directed identification and characterisation of genes causally related to IS. Methods. 20 patients with IS and 20 controls matched for age and sex will be identified through the clinic with approval from the institutional review board. Power analyses were done to detect the difference in distributions as the proportion of fisher tests with p values less than 0·05. A sample size of 20 per group gives 86–99% power to realise results under conservative assumptions. IS patients and controls undergo vestibular system examination via T2 MRI imaging. Extracted data are evaluated by a team including Dr Rousie, ENT, radiology, and orthopaedic surgery. DNA is extracted with Gentra Puregene kits from Qiagen (Valencia, CA, USA). Developmental genes related to SCC and axial somatogenesis are being identified through a bioinformatics approach, targeting known IS genomic loci. Custom single-nucleotide
Diastematomyelia is a rare congenital abnormality
of the spinal cord. This paper summarises more than 30 years’ experience
of treating this condition. Data were collected retrospectively
on 138 patients with diastematomyelia (34 males, 104 females) who
were treated at our hospital from May 1978 to April 2010. A total
of 106 patients had double dural